Volume 40 Issue 08
Aug.  2012
Turn off MathJax
Article Contents
ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, (08): 967-972.
Citation: ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, (08): 967-972.

Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell

  • Received Date: 2012-02-04
  • Rev Recd Date: 2012-04-16
  • Publish Date: 2012-08-31
  • Electroactive biofilms were formed on carbon paper under constant external resistance of 1 000 Ω using Escherichia coli as inoculum and glucose as substrate. In this paper, the performance of the biofilm growth of the microorganism directly on the anode was studied. To form a mature biofilm, five fed-batch cycles were repeated with every period of 1 day. The electrochemical characterization of the microbial fuel cell was evaluated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and polarization behavior. It was evident that the enhanced MFC performance was associated with the development of the biofilm. With formation of the mature anode biofilm, the anode polarization resistance was decreased by 66.5%, the anode potential also gradually decreased, while peak output power density was enhanced over 260%.
  • loading
  • RAO J R,RICHTER G J,VONSTURM F,WEIDLICH E.Performance of glucose electrodes and characteristics of different biofuel cell constructions[J].Bioelectrochem Bioenerg, 1976, 3(1): 139-150.
    ALLEN R M,BENNETTO H P. Microbial fuel-cells--electricity production from carbonhydrates[J].Appl Biochem Biotechnol, 1993,39-40:27-40.
    LOVLEY D R.Bug juice: Harvesting electricity with microorganisms[J].Nat Rev Microbiol, 2006,4(7): 497-508.
    LOGAN B E. Extracting hydrogen and electricity from renewable resources[J]. Environ Sci Technol, 2004, 38(1): 160-167.
    MIN B, KIM J, OH S, REGAN J M, LOGAN B E. Electricity generation from swine wastewater using microbial fuel cells[J]. Water Res, 2005, 39(20): 4961-4968.
    ZHANG L, ZHOU S, ZHUANG L, LI W, ZHANG J, LU N, DENG L. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochem Commun, 2008, 10(10): 1641-1643.
    AELTERMAN P, RABAEY K, PHAM H T, BOON N, VERSTRAETE W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environ Sci Technol, 2006, 40(10): 3388-3394.
    LIU Y, HARNISCH F, FRICKE K, SIETMANN R, SCHRÖDER U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure[J]. Biosens Bioelectron, 2008, 24(4): 1012-1017.
    RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-5382.
    LOGAN B E, HAMELERS B, ROZENDAL R, SCHRORDER U, KELLER J, FREGUIA S, AELTERMANP, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.
    HE Z, WAGNER N, MINTEER S, ANGENENT L. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy[J]. Environ Sci Technol, 2006, 40(17): 5212-5217.
    KATZ E, WILLNER I. Probing bimolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA sensor, and enzyme biosensors[J]. Electroanalysis, 2003, 15(11): 913-947.
    WAGNER N. Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy[J]. J Appl Electrochem, 2002,32(8): 859-863.
    ORAZEM M E, SHUKLA P, MEMBRINO M A. Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements[J]. Electrochim Acta, 2002,47(13): 2027-2034.
    RAMASAMY R P, MENCH M M, REGAN J M. Impact of initial biofilm growth on the anode impedance of microbial fuel cells[J]. Biotechnol Bioeng, 2008, 101(1): 101-108.
    LIU H, CHENG S A, L OGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Technol, 2005, 39(14): 5488-5493.
    AELTERMAN P, FREGUIA S, KELLER J, VERSTRAETE W, RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78(3): 409-418.
    FINKELSTEIN D A, TENDER L M, ZEIKUS J G. Effect of electrode potential on electrode-reducing microbiota[J]. Environ Sci Technol, 2006, 40(22): 6990-6995.
    SCHRÖDER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Phys Chem Chem Phys, 2007, 9: 2619-2629.
    CHENG S, LOGAN B E. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells[J]. Bioresour Technol, 2011, 102(6): 4468-4473.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2166) PDF downloads(709) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return