Volume 40 Issue 10
Oct.  2012
Turn off MathJax
Article Contents
XIE Jian-jun, YANG Xue-min, CHEN An-he, DING Tong-li, SONG Wen-li, LIN Wei-gang. Nitrogen transformation during coal decoulping combustion Ⅲ: NO and N2O reduction with multi-component of pyrolysis gas[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1172-1178.
Citation: XIE Jian-jun, YANG Xue-min, CHEN An-he, DING Tong-li, SONG Wen-li, LIN Wei-gang. Nitrogen transformation during coal decoulping combustion Ⅲ: NO and N2O reduction with multi-component of pyrolysis gas[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1172-1178.

Nitrogen transformation during coal decoulping combustion Ⅲ: NO and N2O reduction with multi-component of pyrolysis gas

  • Received Date: 2011-11-07
  • Rev Recd Date: 2012-02-27
  • Publish Date: 2012-10-31
  • Reduction of NO and N2O with the simulated pyrolysis gas of NH3-CO-H2-CH4-O2 mixture was experimentally studied in an ideal plug flow reactor. The effects of temperature, excess air number λ, concentration of CH4, CO, H2, NH3 in the simulated pyrolysis gas, concentration of NO and N2O in the simulated flue gas on reduction of NO, N2O and total nitrogen conversion efficiency were experimentally investigated. The results show that adding combustible or reducing species of CO, H2, CH4 into NH3 can decease about 150~200 K of temperature range or window for reducing NO, the obtained optimal temperature range of reducing NO is in a range of 1 073~1 223 K. The excess air number λ or oxygen content in NH3-CO-H2-CH4-O2 mixture shows an important influence on reduction of NO and N2O. When the excess air number λ is controlled as 0.6, i.e., similar to the case of fuel-rich, the maximum decomposition ratio of NO and N2O in the simulated flue gas reaches 60.6% and 100%, respectively. When the excess air number λ is kept at 0.6 in a temperature range of 1 073~1 223 K, higher concentration of CH4, CO, H2 in the simulated pyrolysis gas can result in an effectively decomposition of N2O, but lead to an increase of NO; however, higher conversion efficiency of NO can be achieved under the condition of increasing the concentration of NH3 in the simulated pyrolysis gas.
  • loading
  • 林伟刚. 中国洁净煤技术发展中的若干问题[J]. 世界科技研究与发展, 2000, 22(4): 50-53. (LIN Wei-gang. Research and development of clean coal technologies in China[J]. World Sci-Tech R & D, 2000, 22(4): 50-53.)
    徐有宁. 抑制氮氧化物无烟燃煤技术及其应用. 北京:中国科学院研究生院, 中国科学院化工冶金研究所, 2000. (XU You-ning. NOx-suppressed and smokeless coal combustion technology and its application. Beijing: Institute of Chemical Metallurgy, Chinese Academy of Sciences, 2000.)
    何京东. 煤炭解耦燃烧NO抑制机理实验研究. 北京:中国科学院研究生院, 中国科学院过程工程研究所, 2006. (HE Jing-dong. Experimental study of the reduction mechanism on NO emission in decooupling combustion of coal. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2006.)
    董利. 生物质解耦燃烧降低NO排放机理及应用研究. 北京:中国科学院研究生院, 中国科学院过程工程研究所, 2007. (DONG Li. NO reduction by decoupling combustion of biomass and its application. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2007.)
    WOJTOWICZ M A, PELS J R, MOULIJN J A. Combustion of coal as a source of N2O emission[J]. Fuel Process Technol, 1993, 34(1): 1-71.
    JOHNSSON J E. Formation and reduction of nitrogen oxides in fluidized-bed combustion[J]. Fuel, 1994, 73(9): 1398-1415.
    LYNGFELT A, AMAND L-E, LECKNER B. Obtainining low N2O, NO, and SO2 emissions from circulating fluidized bed boilers by reversing the air staging conditions[J]. Energy Fuels, 1995, 9(2): 386-387.
    LYNGFELT A, LECKNER B. SO2 capture and N2O reduction in a circulating fluidized-bed boiler: Influence of temperature and air staging [J]. Fuel, 1993, 72(11): 1553-1561.
    谢建军, 杨学民, 朱文魁, 丁同利, 宋文立, 林伟刚. 煤炭解耦燃烧过程N迁移与转化I: 热解阶段煤N释放规律[J]. 燃料化学学报, 2012, 40(8): 919-926. (XIE Jian-jun, YANG Xue-min, ZHU Wen-kui, DING Tong-li, SONG Wen-li, LIN Wei-gang. Nitrogen transformation during coal decoupling combustion I: release behavior of coal-nitrogen during pyrolysis stage[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 919-926.)
    谢建军, 杨学民, 陈安合,丁同利, 宋文立, 林伟刚. 煤炭解耦燃烧过程N 迁移与转化II: 单组分气相化学反应实验[J]. 燃料化学学报, 2012, 40(9): 1051-1059. (XIE Jian-jun, YANG Xu-min, CHEN An-hei, DING Tong-li, SONG Wen-li, LIN Wei-gang. Nitrogen transformation during coal ecoupling combustion II: NO and N2O reduction with single component of pyrolysis gas[J]. Journal of Fuel Chemistry and Technology, 2012, 40(9): 1051-1059.)
    MAHMOUDI S, BAEYENS J, SEVILLE J P K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass[J]. Biomass Bioenerg, 2010, 34(9): 1393-1409.
    SKREIBERG O, KILPINEN P, GLARBORG P. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor[J]. Combust Flame, 2004, 136(4): 501-518.
    ALZUETA M U, BILBAO R, MILLERA A, GLARBORG P, OSTBERG M, DAM-JOHANSEN K. Modeling low-temperature gas reburning. NOx reduction potential and effects of mixing[J]. Energy Fuels, 1998, 12(2): 329-338.
    谢建军, 杨学民, 张磊, 丁同利, 姚建中, 宋文立, 林伟刚, 郭汉杰. 循环流化床燃煤过程NO、N2O和SO2的排放行为研究[J]. 燃料化学学报, 2006, 34(2): 151-159. (XIE Jian-jun, YANG Xue-min, ZHANG Lei, DING Tong-li, YAO Jian-zhong, SONG Wen-li, LIN Wei-gang, GUO Han-jie. Behavior of NO, N2O and SO2 emissions during coal combustion in a circulating fluidized bed combustor[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 151-159.)
    ZHANG Y, CAI N, YANG J, XU B. Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process[J]. Chemosphere, 2008, 73(5): 650-656.
    ZABETTA E C, HUPA M, SAVIHARJU K. Reducing NOx emissions using fuel staging, air staging, and selective noncatalytic reduction in synergy[J]. Ind Eng Chem Res, 2005, 44(13): 4552-4561.
    GUO H, SMALLWOOD G J, LIU F, JU Y, GULDER O L. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames[J]. Proc Combust Inst, 2005, 30(1): 303-311.
    FARAVELLI T, FRASSOLDATI A, RANZI E. Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures[J]. Combust Flame, 2003, 132(1/2): 188-207.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1738) PDF downloads(631) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return