Volume 40 Issue 11
Nov.  2012
Turn off MathJax
Article Contents
GU Chuan-tao, LI Guang-jun, HU Yun-qing, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1328-1335.
Citation: GU Chuan-tao, LI Guang-jun, HU Yun-qing, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1328-1335.

Effect of calcination temperature of starch-modified silica on the performance of silica supported Cu catalyst in methanol conversion

  • Received Date: 2012-02-08
  • Rev Recd Date: 2012-04-16
  • Publish Date: 2012-11-30
  • A series of starch-modified SiO2 (SSi-T) were obtained by calcining the extrudate of SiO2 and starch at different temperatures (T) and used as the support to prepare Cu catalysts (Cu/SSi-T, 10%) by the impregnation method. The Cu catalysts were characterized by N2 sorption, FT-IR, TG, XRD, SEM and H2-TPR; their catalytic performance in methanol conversion was investigated in a fixed bed reactor. The results indicated that starch can reduce the removal rate of silanol groups (Si-OH) from the surface of the support during calcination and the surface silanol groups are beneficial to the dispersion of Cu species. The calcination temperature of starch-modified SiO2 exhibits a significant influence on the surface silanol (Si-OH) concentration, the surface area and porous structure of the support; as a result, it may be used to adjust the size of supported CuO crystal grains and dispersion of Cu species, which determine the performance of the silica supported Cu catalysts in methanol conversion.
  • loading
  • 朱洪法. 催化剂载体制备与应用技术[M]. 北京: 石油工业出版社, 2003: 6-17. (ZHU Hong-fa. Preparation and application of catalyst carrier[M]. Beijing: Petroleum Industry Press, 2003: 6-17.)
    ILER R K. The Chemistry of silica, solubility, polymerization, colloid, and surface properties and biochemistry[M]. New York: Wiley-Interscience, 1979: 622-654.
    史泰尔斯A B. 催化剂载体与负载型催化剂[M]. 李大东, 钟孝湘译. 北京: 中国石化出版社, 1992: 59-65. (STILES A B. Catalytic support and supported catalyst[M]. trans LI Da-zhong, ZHONG Xiao-xiang. Beijing: Chemical Industry Press, 1992: 59-65.)
    POLSHETTIWAR V, MOLNAR A. Silica-supported Pd catalysts for Heck coupling reactions[J]. Tetrahedron, 2007, 63(30): 6949-6976.
    POLSHETTIWAR V, LEN C. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions[J]. Coord Chem Rev, 2009, 253(21/22): 2599-2626.
    PULLUKAT T J, HOFF R E. Silica-based Ziegler-Natta catalysts: A patent review[J]. Catal Rev-Sci Eng, 1999, 41(3/4): 389-428.
    潘履让. 固体催化剂的设计与制备[M]. 天津: 南开大学出版社, 1993: 89-91. (PAN Lv-rang. Design and preparation of solid catalysts[M]. Tianjin: Nankai University Press, 1993: 89-91.)
    KRIJN P. Synthesis of solid catalysts[M]. Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA, 2009: 7-10.
    OLAH G A. Beyond oil and gas: The methanol economy[J]. Angew Chem Int Ed, 2005, 44(18): 2636-2639.
    SÁ S, SILVA H, BRANDO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B, 2010, 99(1/2): 43-57.
    SCHRADER J, SCHILLING M, HOLTMANN D, SELL D, FILHO M V, MARX A, VORHOLT J A. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends Biotechnol, 2009, 27(2): 107-115.
    BASRI S, KAMARUDIN S K, DAUD W R W, YAAKUB Z. Nanocatalyst for direct methanol fuel cell (DMFC) [J]. In J Hydrogen Energy, 2010, 35(15): 7957-7970.
    KIM H Y, LEE H M, PALA R G S, METIU H. Oxidative dehydrogenation of methanol to formaldehyde by isolated vanadium, molybdenum, and chromium oxide clusters supported on rutile TiO2(110)[J]. J Physi Chem C, 2009, 113(36): 16083-16093.
    MINYUKOVA T P, SIMENTSOVA I I, KHASIN A V, SHTERTSER N V, BARONSKAYA N A, KHASSIN A A, YURIEVA T M. Dehydrogenation of methanol over copper-containing catalysts[J]. Appl Catal, A, 2002, 237(1/2): 171-180.
    AI M. Dehydrogenation of methanol to methyl formate over copper-based catalysts[J]. Appl Catal, 1984, 11(2): 259-270.
    SODESAWA T, NAGACHO M, ONODERA A, NOZAKI F. Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method[J]. J Catal, 1986, 102(2): 460-463.
    ZHURAVLEV L T. Concentration of hydroxyl-groups on the surface of amorphous silicas[J]. Langmuir, 1987, 3(3): 316-318.
    ZHURAVLEV L T. Characterization of amorphous silica surface[J]. React Kinet Catal Lett, 1993, 50(1/2): 15-25.
    WU C C. Adsorption property of silican dioxidehybrid starch material to dyes[J]. Environ Sci Technol, 2011, 34(9): 162-165.
    阮建明, 王亚东, 伍秋美, 周忠诚. 单分散球形SiO2的制备及其分散体系的流变性能[J]. 中南大学学报 自然科学版, 2007, 38(5): 825-829. (UAN Jian-ming, WANG Ya-dong, WU Qiu-mei, ZHOU Zhong-cheng. Preparation of monodisperse spherical SiO2 and rheological property of its suspension[J]. Journal of Central South University(Science and Technology), 2007, 38(5): 825-829.)
    WILLIAMS D H, FLEMING I. 有机化学中的光谱方法[M]. 王剑波, 施卫峰译. 北京: 北京大学出版社, 2001: 23-44. (WILLIAMS D H, FLEMING I. Spectroscopic methods in organic chemistry[M]. trans WANG Jian-bo, SHI Wei-feng. Beijing: Peking University Press, 2001: 23-44)
    GUERREIRO E D, GORRIZ O F, RIVAROLA J B, ARRUA L A. Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation[J]. Appl Catal A, 1997, 165(1/2): 259-271.
    GUERREIRO E D, GORRIZ O F, Larsen G, ARRUA L A. Cu/SiO2 catalysts for methanol to methyl formate dehydrogenation -A comparative study using different preparation techniques[J]. Appl Catal A, 2000, 204(1): 33-48.
    ZHANG R, SUN Y H, PENG S Y. Dehydrogenation of methanol to methyl formate over CuO-SiO2 gel catalyst[J]. React Kinet Catal Lett, 1999, 67(1): 95-102.
    张荣. 铜基催化剂的表面结构和甲醇脱氢反应选择性的调控. 太原: 中国科学院山西煤炭化学研究所, 1999 (ZHANG Rong. Surface properties of copper catalysts and control of the selectivity of methanol dehydrogenation. Taiyuan: Institute of Coal Chemistry, CAS, 1999)
    TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. Mechanism of formation of methyl formate from formaldehyde over copper catalysts[J]. Chem Lett, 1983, 7: 1061-1064.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1994) PDF downloads(623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return