Volume 41 Issue 01
Jan.  2013
Turn off MathJax
Article Contents
ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2013, 41(01): 116-122.
Citation: ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2013, 41(01): 116-122.

Optimization of methanol steam reforming for hydrogen production

  • Received Date: 2012-07-05
  • Rev Recd Date: 2012-09-25
  • Publish Date: 2013-01-31
  • The catalytic performance of CuO/ZnO/CeO2/ZrO2 prepared by co-precipitation for methanol steam reforming was investigated using a statistical set of experiments in order to optimize the reaction conditions for obtaining minimal carbon monoxide in the reformed gas. The reaction temperature, steam to methanol ratio, methanol gas hourly space velocity (GHSV) were evaluated with a full factorial design experiment. The reaction temperature displayed much greater influence on the response (methanol conversion and CO concentration in reformed gas), GHSV has minimal influence on the CO concentration in reformed gas. At a fixed low methanol GHSV (300 h-1), a central composite rotatable design was then used to approximate the optimal conditions by simultaneously considering the methanol conversion and CO concentration. The optimum theoretical conditions were found to lie within a reaction temperature of 249~258℃ and a W/M ratio of 1.76~2.00, in close agreement with the experimental results.
  • loading
  • LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9): 923-933.
    LINDSTROM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A, 2002, 234(1/2): 111-125.
    MATTER P H, OZKAN U S. Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2[J]. J Catal, 2005, 234(2): 463-475.
    FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009, 10(14): 1800-1803.
    HUANG G, LIAW B-J, JHANG C-J, CHEN Y-Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A, 2009, 358(1): 7-12.
    潘相敏, 宋小瑜, 余瀛, 周伟, 马建新. 湿混法制备甲醇氧化重整制氢催化剂[J]. 燃料化学学报, 2005, 33(3): 339-343. (PAN Xiang-min, SONG Xiao-yu, YU Ying, ZHOU Wei, MA Jian-xin. Wet-mixed CuZnAlZr catalysts for oxidative steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 339-343.)
    AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A, 2003, 242(2): 233-245.
    CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxdiation of methanol over ZnO-supported palladium catalysts[J]. J Catal, 1998, 179(1): 150-162.
    MU X, PAN L, LIU N, ZHANG C, LI S, SUN G, WANG S. Autothermal reforming of methanol in a mini-reactor for miniature fuel cell[J]. Int J Hydrogen Energy, 2007, 32(15): 3327-3334.
    WANG C, LIU N, PAN L, WANG S, YUAN Z, WANG S. Measurement of concentration profiles over ZnO-Cr2O3/CeO2-ZrO2 monolithic catalyst in oxidative steam reforming of methanol[J]. Fuel Process Technol, 2007, 88(1): 65-71.
    LIU N, YUAN Z, WANG S, ZHANG C, WANG S, LI D. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for hydrogen production by methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6): 1643.
    LIU N, YUAN Z, WANG C, WANG S, ZHANG C, WANG S. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.
    CHEN G, YUAN Q, LI S. Microchannel reactor for methanol autothermal reforming[J]. Chin J Catal, 2002, 23(6): 491-492.
    PATEL S, PANT K K. Selective production of hydrogen via oxidative steam reforming of methanol using Cu-Zn-Ce-Al oxide catalysts[J]. Chem Eng Sci, 2007, 62(18/20): 5436-5443.
    PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007, 88(8): 825- 832.
    ZHANG X R, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A, 2003, 194(1/2): 99-105.
    ZHANG X R, SHI P, ZHAO J, ZHAO M, LIU C. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3): 183-192.
    YANG H-M, LIAO P-H. Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J]. Appl Catal A, 2007, 317(2): 226-233.
    OGUCHI H, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Cu2O as active species in the stram reforming of methanol by CuO/ZrO2 catalysts[J]. Appl Catal A, 2005, 293(1/2): 64-70.
    TAKAHASHI T, INOUE M, KAI T. Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys[J]. Appl Catal A, 2001, 218(1/2): 189-195.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2294) PDF downloads(892) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return