Volume 41 Issue 09
Sep.  2013
Turn off MathJax
Article Contents
LI Guo-na, LI Chun-ying, WANG Wei-na, SHEN Wen, LÜ Jian, WANG Wen-liang. Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel n-decane[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1136-1145.
Citation: LI Guo-na, LI Chun-ying, WANG Wei-na, SHEN Wen, LÜ Jian, WANG Wen-liang. Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel n-decane[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1136-1145.

Theoretical study on the mechanism, heat sink and product distribution for thermal decomposition of endothermic hydrocarbon fuel n-decane

  • Received Date: 2013-02-19
  • Rev Recd Date: 2013-05-04
  • Publish Date: 2013-09-30
  • The geometry optimizations and vibrational frequencies of reactions, products and transition states involved in pyrolysis of n-decane were performed using the hybrid method B3LYP with 6-311G (d,p) basis set based on density functional theory. The potential energy surfaces of n-decane were built by the B3LYP/aug-cc-pVTZ methods. The rate constants of all reactions with Eckart correction were calculated by the TheRate program package. The heat capacity and entropy (Cp,mθ and S298 Kθ) at different temperatures were obtained by statistic thermodynamics. In order to calculate the standard formation enthalpy (△fH298 Kθ) for all species, isodesmic reactions were designed. The Chemkin II program was used to model the product distribution and heat sink. The effects of the temperature and pressure on the heat sink and product distribution were discussed. The results show that the C-C bond breaking process is the initial step of all reactions and H-abstraction reaction is easier to proceed than the β-scission reaction. The cracking initial temperature is 500 ℃ and the reactions mainly occur in the range of 600~700 ℃. The major products are hydrogen, methane, ethylene, ethane, propylene and 1,3-butadiene and the product distributions vary with temperatures. The total heat sink of n-decane is 2.334 MJ/kg at 600 ℃ and 2.5 MPa, with the conversions of 25.9%, which could meet the cooling requirement of aircrafts at 5~6 Mach number.
  • loading
  • 李春迎, 李凤仙, 杜咏梅, 吕剑. 吸热型碳氢燃料五环[6.3.1.02,7.03,5.09,11]十二烷的催化合成[J]. 燃料化学学报, 2007, 35(5): 637-640. (LI Chun-ying, LI Feng-xian, Du Yong-mei, LU Jian. Synthesis of endothermic hydrocarbon fuel pentacyclo[6.3.1.02,7.03,5.09,11] dodecane[J]. Journal of Fuel Chemistry and Technology, 2007, 35(5): 637-640.)
    孙青梅, 米镇涛, 张香文. 吸热型碳氢燃料RP-3仿JP-7临界性质(tcpc)的测定[J]. 燃料化学学报, 2006, 34(4): 466-470. (SUN Qing-mei, MI Zhen-tao, ZHANG Xiang-wen. Determination of critical properties (tc, pc) of endothermic hydrocarbon fuels RP-3 and simulated JP-7[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 466-470.)
    HERBINET O, MARQUAIRE P M, FREDERIQUE B L, FOURNET R. Thermal decomposition of n-dodecane: Experiments and kinetic modeling[J]. J Anal App Pyrolysis, 2007, 78(2): 419-429.
    ZAMOSTNY P, BELOHLAV Z, STARKBAUMOVA L, PATERA J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. J Anal Appl Pyrolysis, 2010, 87(2): 207-216.
    YU J, ESER S. Thermal decomposition of C10-C14 normal alkanes in near-critical and supercritical regions: Product distributions and reaction mechanisms[J]. Ind Eng Chem Res,1997, 36(3): 574-584.
    焦毅, 李军, 王静波, 王健礼, 朱权, 陈耀强, 李象远. 正癸烷热裂解实验和动力学模拟[J]. 物理化学学报, 2011, 27(5): 1061-1067. (JIAO Yi, LI Jun, WANG Jing-bo, WANG Jian-li, ZHU Quan, CHEN Yao-qiang, LI Xiang-yuan. Experiment and kinetics simulation on the pyrolysis of n-decane[J]. Acta Phys Chim Sin, 2011, 27(5): 1061-1067.)
    ZEPPIERI S P, KLOTZ S D, DRYER F L. Modeling concepts for larger carbon mumber alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis[J]. Proc Combust Inst, 2000, 28(2): 1587-1595.
    FRISCH M J, TRUCKS G W. Gaussiah 03[CP]. Gaussion, Inc., Wallingford CT, 2004.
    DUNCAN W T, BELL R L, TRUONG T N. The rate: Program for ab initio direct dynamics calculations of thermal and vibrational-state-selected rate constants[J]. J Comput Chem, 1998, 19(9): 1039-1052.
    MANION J A, HUIE R E, LEVIN R D, BURGESS Jr, ORKIN V L, TSANG W, MCGIVERN W S, HUDEGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TREREZA A M, LIN C-Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. Chemical Kinetics Database, NIST Standard Reference Database 17 (Web Version), Release 1. 4. 2, data version 08. 09
    . National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-8380.
    COHEN N. Revised group additivity values for enthalpies of formation(at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds[J]. J Phys Chem Ref Data, 1996, 25(6): 1411-1481.
    袁涛. 正庚烷、异辛烷热解和预混火焰的实验及动力学模型研究[D]. 合肥:中国科学技术大学, 2010. (YUAN Tao. Experimental and kinetic modeling studies on pyrolysis and premixed flames of n-hptane and iso-octane[D]. Hefei: University of Science and Technology of China, 2010.)
    CURRAN H J. Rate constant estimation for C1 to C4 alkyl and alkoxyl radical decomposition[J]. Int J Chem Kinet, 2006, 38(4): 250-275.
    FENG Y, NIIRANEN J T, BENCSURA A, KNYAZEV V D, GUTMAN D, TSANG W. Weak collision effects in the reaction C2H5→C2H4+H[J]. J Phys Chem, 1993, 97(4): 871-880.
    BENCSURA A, KNYAZEV V D, XING S B, SLAGLE I R, GUTMAN D. Kinetics of the thermal decomposition of the n-propyl radical[J]. Symp Int Combust Proc,1992, 24: 629-635.
    KNYAZEV V D, SLAGLE I R. Unimolecular decomposition of n-C4H9 and iso-C4H9 radicals[J]. J Phys Chem, 1996, 100(13): 5318-5328.
    KEE R J, RUPLEY F M, MILLER J A, COLTRIN M E, GRCAR J F, MEEKS E, MOFFAT H K, LUTZ A E, DIXON-LEWIS G, SMOOKE M D, WARNATZ J, EVANS G H, LARSON R S, MITCHELL R E, PETZOLD L R, REYNOLDS W C, CARACOTSIOS M, STEWART W E, GLARBORG P, WANG C, ADIGUN O, HOUF W G, CHOU C P, MILLER S F. 2002 PaSR Application user manual: Modeling the mixing and kinetics in partially stirred reactors[Z]. Chemkin Collection Release 3.7, Reaction Design, Inc., San Diego, CA, 2002.
    贾贞健. 吸热型碳氢燃料正癸烷高温裂解机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. (JIA Zhen-jian. Pyrolysis mechanism study of endothermic hydrocarbon fuel n-decane at high temperature[D]. Harbin: Harbin Institute of Techonlogy, 2011.)
    刑燕, 方文军, 谢文杰, 郭永胜, 林瑞森. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报, 2008, 66(20): 2243-2247. (XING Yan, FANG Wen-jun, XIE Wen-jie, GUO Yong-sheng, LIN Rui-sen. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20): 2243-2247.)
    朱丹阳. 吸热型碳氢燃料热沉的测定及影响因素[D]. 天津: 天津大学, 2004. (ZHU Dan-yang. Measuring of heat sink of endothermic hydrocarbon fuels and some factors[D]. Tianjin: Tianjin University, 2004.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1847) PDF downloads(1275) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return