Volume 41 Issue 12
Dec.  2013
Turn off MathJax
Article Contents
YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1451-1458.
Citation: YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1451-1458.

Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler

  • Received Date: 2013-03-19
  • Rev Recd Date: 2013-06-03
  • Publish Date: 2013-12-30
  • The fly ashes from a 320 MW unit boiler with three excess air conditions were sieved to 4 sizes. The carbon contents of the ashes were measured, and the ashes were heated at two heating modes. The Hg contents of the ashes were analyzed using LUMEX Mercury Analyzer, and the Hg species in the ashes was determined according to the Hg release characteristics at different heating temperatures. The activation energies for Hg release were calculated. The results indicate that the Hg concentration in the ashes increases with the decreasing of ash size. Increasing the excess air leads to the decrease of carbon in ash, while the influence of excess air on the Hg content varies with ash size. Hg compounds in fly ash are mainly HgCl2 and HgS. The rising excess air results in a decrease of HgCl2 proportion and an increase of HgS proportion, while the proportion of HgO and HgSO4 keeps almost constant. Residence time is a key factor to influence the formation of particulate Hg. The increasing of excess air and particle size leads to an increase of activation energy for Hg release.
  • loading
  • Environmental Protection Agency, Office of Quality Planning and Stabdards and Office of Research and Development. Mercury study report to congress; EPA452r/R-97-003[R]. Washington, DC: U. S. 1997.
    MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: anthropogenic influences[J]. Geochim Cosmochim Ac, 1994, 58(15): 3191-3198.
    PARK K S, SEO Y C, LEE S J, LEE J H. Emission and speciation of mercury from various combustion sources[J]. Powder Technol, 2008, 180(1/2): 151-156.
    ZHONG L P, CAO Y, LI W Y, PAN W P, XIE K C. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 641-646.
    WANG J, WANG W, XU W, WANG X, ZHAO S. Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J]. J Environ Sci-China, 2011, 23(11): 1839-1844.
    CHEN L, DUAN Y F, ZHUO Y Q, YANG L G, ZHANG L, YANG X H, YAO Q, JIANG Y M, XU X C. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.
    SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Process Technol, 2000, 65: 423-424.
    王帅, 高继慧, 吴燕燕, 汪细河, 吴少华. 燃煤烟气NO/SO2 对Cl/Cl2 形成过程的影响机制[J]. 中国电机工程学报, 2010, 30(20): 33-38. (WANG Shuai, GAO Ji-hui, WU Yan-yan, WANG xi-he, WU shao-hua. Effect mechanism of NO/SO2 on Cl/Cl2 formation in coal-fired flue gas[J]. Proceedings of the CSEE, 2010, 30(20): 33-38.)
    SABLE S P, JONG W, SPLIETHOFF H. Combined Homo-and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases[J]. Energy Fuels, 2008, 22(1): 321-330.
    杨立国, 段钰锋, 杨祥花, 江贻满, 王运军, 赵长遂. 燃煤电厂汞排放特性实验研究[J]. 东南大学学报(自然科学版), 2007, 37(5): 817-821. (YANG Li-guo, DUAN Yu-feng, YANG Xiang-hua, JIANG Yi-man, WANG Yun-jun, ZHAO Chang-sui. Mercury emission characteristics from coal-fired power plants[J]. Journal of Southeast University(Natural Science Edition), 2007, 37(5): 817-821.)
    王起超, 沈文国, 麻壮伟. 中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321. (WANG Qi-chao, SHEN Wen-guo, MA Zhuang-wei. Theestimation of mercury emission from coal combustion in China[J]. China Environmental Science, 1999, 19(4): 318-321(in Chinese).)
    姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1): 31-37. (YAO Duo-xi, ZHI Xia-chen, ZHENG Bao-shan. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1): 31-37.)
    GALE T K, LANI B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Process Technol, 2008, 89(2): 139-151.
    ANTONIA L-A M, MERCEDES D-S, ROSA M-T M. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content[J]. Ind Eng Chem Res, 2007, 46(3): 927-931.
    LOPEZ-ANTON M A, YANG Y, PERRY R, MAROTO-VALER M M. Analysis of mercury species present during coal combusti on by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.
    VIDIC R D, MCLAUGHLIN J B. Uptake of elemental mercury vapors by activated carbons[J]. J Air Waste Manage, 1996, 46(3): 241-250.
    VIDIC R D, CHANG M T, THURNAU R C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons[J]. J Air Waste Manage, 1998, 48(3): 247-255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1175) PDF downloads(674) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return