Volume 42 Issue 03
Mar.  2014
Turn off MathJax
Article Contents
WANG Qing, REN Li-guo, WANG Rui, BAI Jing-ru, WANG Hao-tian, YAN Yu-he. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 303-308.
Citation: WANG Qing, REN Li-guo, WANG Rui, BAI Jing-ru, WANG Hao-tian, YAN Yu-he. Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 303-308.

Characterization of oil shales by 13C-NMR and the simulation of pyrolysis by FLASHCHAIN

  • Received Date: 2013-09-17
  • Rev Recd Date: 2013-12-01
  • Publish Date: 2014-03-31
  • The carbon skeleton structure of oil shales from Gansu Yaojie mine was characterized by the 13C solid-state NMR; the chemical structure parameters of cluster in the oil shales, such as average number of carbons, aromatic carbons, aliphatic carbons and aromatic rings, were determined. TG-FTIR tests were used to obtain the yields of pyrolysis products. Considering the cluster chemical structure parameters determined by 13C solid-state NMR, the release of pyrolysis products was simulated by FLASHCHAIN. The simulation results are in good agreement with the TG-FTIR tests, proving the rationality of the model proposed.
  • loading
  • 侯祥麟. 中国页岩油工业[M]. 北京: 石油工业出版社, 1984: 5-10. (HOU Xiang-lin. China shale oil industry[M]. Beijing: Petroleum Industry Press, 1984: 5-10.)
    QIAN J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3): 193-252.
    钱家麟, 尹亮. 油页岩-石油的补充能源[M]. 北京: 中国石化出版社, 2008: 1-3. (QIAN Jia-lin, YIN Liang. Oil shale-The complementary energy of petroleum[M]. Beijing: China Petrochemical Press, 2008: 1-3.)
    MAO K, KENNEDY G J, ALTHAUS S M, PRUSKI M. Determination of the average aromatic cluster size of fossil fuels by solid-state NMR at high magnetic field[J]. Energy Fuels, 2013, 27(2): 760-763.
    TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of huadian oil shale kerogen using direct techniques (solid-state 13C-NMR, XPS, FT-IR, and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.
    MIKNIS F P, LINDNER A W, GANNON A J, DAVIS M F, MACIEL G E. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3/4): 239-248.
    秦匡宗, 劳永新. 茂名和抚顺油页岩组成结构的研究I. 有机质的芳碳结构[J]. 燃料化学学报, 1985, 13(2): 133-140. (QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I: The structural components of the organic matter[J]. Journal of Fuel Chemistry and Technology, 1985, 13(2): 133-140.)
    NIKSA S, KERSTEIN A R. FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation[J]. Energy Fuels, 1991, 5(5): 647-665.
    NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 2. Impact of operating conditions[J]. Energy Fuels, 1991, 5(5): 665-673.
    NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 3. Modeling the behavior of various coals[J]. Energy Fuels, 1991, 5(5): 673-683.
    NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analyses alone[J]. Energy Fuels, 1994, 8(3): 659-670.
    NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 5. Interpreting rates of devolatilization for various coal types and operating conditions[J]. Energy Fuels, 1994, 8(3): 671-679.
    NIKSA S. FLASHCHAIN theory for rapid coal devolatilization kinetics 6. Predicting the evolution of fuel nitrogen from various coals[J]. Energy Fuels, 1995, 9(3): 467-478.
    NIKSA S. FLASHCHAIN theory for rapid coal de volatilization kinetics 7. Predicting the release of oxygen species from various coals[J]. Energy Fuels, 1996, 10(1): 173-187.
    NIKSA S, KERSTEIN A R. The distributed-energy chain model for rapid coal devolatilization kinetics. Part I: Formulation[J]. Combust Flame, 1986, 66(2): 95-109.
    NIKSA S. The distributed-energy chain model for rapid coal devolatilization kinetics part Ⅱ: Transient weight loss correlations[J]. Combust Flame, 1986, 66(2): 111-119.
    NIKSA S, KERSTEIN A R. On the role of macromolecular configuration in rapid coal devolatilization[J]. Fuels, 1987, 66(10): 1389-1399.
    NIKSA S. Modeling the devolatilization behavior of high volatile bituminous coals[J]. Symposium (International) on Combustion, 1989, 22(1): 105-114.
    NIKSA S. Rapid coal devolatilization as an model for equilibrium flash distillation[J]. AIChE J, 1988, 34(5): 790-802.
    秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理-固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 69(1): 37-44. (QIN Kuang-zong, WU Xiao-ling. Fushun oil shale pyrolysis mechanism of hydrocarbon-The application of solid state 13C NMR[J]. Journal of Petroleum, 1990, 69(1): 37-44.)
    AXELSON D E. Spinning sideband suppression and quantitative analysis in solid state 13C NMR of fossil fuels[J]. Fuel, 1987, 66(2): 195-199.
    钱琳, 孙绍增, 王东, 郭浩然, 许焕焕, 孟建强, 秦裕琨. 两种褐煤的13C-NMR特征及CPD高温快速热解模拟研究[J]. 煤炭学报, 2013, 38(3): 455-460. (QIAN Lin, SUN Shao-zeng, WANG-Dong, GUO Hao-ran, XU Huan-huan, MENG Jian-qiang, QIN Yu-kun. The 13C-NMR measurements of two types of lignite and the CPD simulation of lignite rapid pyrolysis at high temperature[J]. Journal of China coal society, 2013, 38(3): 455-460.)
    SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid-state NMR of argonne premium coals[J]. Energy Fuels, 1989, 3(2): 187-193.
    XU W C, TOMITA A. Effect of coal type on the flash pyrolysis of various coals[J]. Fuels, 1987, 66(5): 627-631.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1012) PDF downloads(559) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return