Volume 42 Issue 03
Mar.  2014
Turn off MathJax
Article Contents
Sameh M. K. Aboul-Fotouh. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 350-356.
Citation: Sameh M. K. Aboul-Fotouh. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts[J]. Journal of Fuel Chemistry and Technology, 2014, 42(03): 350-356.

Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts

More Information
  • Corresponding author: Sameh M. K. Aboul-Fotouh,E-mail:samehaboulfotouh@yahoo.com
  • Received Date: 2013-12-18
  • Rev Recd Date: 2014-01-30
  • Publish Date: 2014-03-31
  • The catalytic conversion of methanol to dimethylether (DME) was studied over CuO/Al2O3, ZnO/Al2O3 and ZnO-CuO/Al2O3 nanocatalysts prepared in presence or absence of ultrasonic irradiation. The catalysts were characterized by X-ray diffraction (XRD), surface characterization method (BET), scanning electron microscope (SEM), H2-temperature programmed reduction (H2-TPR) and temperature programmed desorption of ammonia (NH3-TPD). The experimental results show that during catalytic dehydration of methanol to dimethylether, the activities of the CuO/Al2O3, ZnO/Al2O3 and ZnO-CuO/Al2O3 catalysts prepared using ultrasonic treatment are much higher than those prepared in absence of ultrasonication. SEM shows that the use of ultrasonication results in much smaller nanoparticles. BET and XRD show that the ultrasonication increases the surface area and pore volume of the catalysts. H2-TPR profiles indicated that reducibility of the sonicated nanocatalysts is carried out at lower temperatures. NH3-TPD shows that ultrasound irradiation has enhanced the acidity of the nanocatalyst and hence enhanced catalytic performance for DME formation.
  • loading
  • FLEISCH T H, BASU A, GRADASSI M J, MASIN J G. Dimethyl ether: A fuel for the 21st century[J]. Stud Surf Sci Catal, 1997, 107: 117-125.
    SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.
    VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2004, 276(1/2): 251-256.
    CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.
    XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A: Gen, 1997, 149: 303-309.
    KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A: Gen, 2006, 309(1): 139-143.
    VISHWANATHAN V, ROH H S, KIM J W, JUN K W. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal Lett, 2004, 96(1/2): 23-28.
    FEI J H, HOU Z Y, ZHU B, LOU H, ZHENG X M. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A: Gen, 2006, 304: 49-54.
    YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005, 147(6): 147-152.
    KIM S M, LEE Y J, BAE J W, POTDAR H S, JUN K W. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl Catal A: Gen, 2008, 348(1): 113-120.
    ZHANG Y L, SUN Q, DENG J F, WU D. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties[J]. Appl Catal A: Gen, 1997, 158(1/2): 105-120.
    [JP2]REUBROYCHAROEN P, VITIDSANT T, YONEYAMA Y, TSUBAKI N. Development of a new low-temperature methanol synthesis process[J]. Catal Today, 2004, 89(4): 447-454.
    MAO D S, YANG W M, XIA J C, ZHANG B, SONG Q Y, CHEN Q L. Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component[J]. J Catal, 2005, 230(1): 140-149.
    BALTES C, VUKOJEVIC S, SCHÜTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344.
    BEHRENS M. Meso-and nano-structuring of industrial Cu/ZnO/Al2O3 catalysts[J]. J Catal, 2009, 267(1): 24-29.
    YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23): 8129-8136.
    [JP2]ABOUL-FOTOUH S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013, 41(9): 1077-1084.
    ABOUL-GHEIT A K. Acid site strength distibution in mordenites by differential scanning calorimetry[J]. J Catal, 1988, 113(2): 490-496.
    ABOUL-GHEIT A K. Effect of decationation and dealumination of zeolite Y on its acidity as assessed by ammonia desorption measured by differential scanning calorimetry (DSC)[J]. Thermochim Acta, 1991, 191(2): 233-240.
    FREEL J. Chemisorption on supported platinum: Ⅰ. Evaluation of a pulse method[J]. J Catal, 1972, 25(1):139-148.
    REZAEI M, ALAVI S M, SAHEBDELFAR S, YAN Z F. Tetragonal nanocrystalline zirconia powder with high surface area and mesoporous structure[J]. Poweder Technol, 2006, 168(2): 59-63.

    KHOSHBIN R, HAGHIGHI M. Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 nanocatalyst[J]. Chem Eng Res Des, 2013, 91(6): 1111-1122.
    XIA S, NIE R, LU X, WANG L, CHEN P, HOU Z. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMg<em>xAl2O8.6 catalysts: The role of basicity and hydrogenation spillover[J]. J Catal, 2012, 296: 1-11.
    NIE R, LEI H, PAN S, WANG L, FEI J, HOU Z. Core-shell structured CuO-ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J]. Fuel, 2012, 96: 419-425.
    FEI J, YANG M, HOU Z, ZHENG X. Effect of the addition of manganese and zinc on the properties of copper-based catalyst for the synthesis of syngas to dimethyl ether[J]. Energy Fuels, 2004, 18(5): 1584-1587.
    YANG M, MEN Y, LI S, CHEN G. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst[J]. Int J Hydrog Energy, 2012, 37(10): 8360-8369.
    NASIKIN M, WAHID A. Effect of ultrasonic during preparation on Cu-based catalyst performance for hydrogenation of CO, to methanol[J]. AJChE, 2005, 5(2): 111-115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1005) PDF downloads(1246) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return