Volume 42 Issue 04
Apr.  2014
Turn off MathJax
Article Contents
ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2014, 42(04): 481-486.
Citation: ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2014, 42(04): 481-486.

Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell

  • Received Date: 2013-12-23
  • Rev Recd Date: 2014-02-12
  • Publish Date: 2014-04-30
  • A microbial fuel cell (MFC) was built using glucose as simulated domestic wastewater, using carbon felt as anode and activated anaerobic sludge as inoculum, which came from a sewage treatment plant. The sewage was treated and electricity was generated synchronously. The effect of substrate concentration and operating temperature on electrode process kinetics was examined. The relationship among electrochemical activity of microbes, charge transfer resistance, anode potential, and capacity of producing electricity was explored. The main conclusions about sewage-fuel MFC are summarized as follows: The relationship between the peak power density and substrate concentration followed Monod enzyme kinetics equation: P=Pmaxc/(ks+c), with a maximum power density (Pmax) of 320.2 mW/m2 and half-saturation concentration (ks) of 138.5 mg/L. When the initial glucose concentration is less than 2 000 mg/L, the reaction follows the first order kinetics equation: -dcA/dt=kcA, k=0.262 h-1. Increasing the temperature from 20 to 35 ℃, the charge transfer resistance decreases from 361.2 to 36.2 Ω, the anode electrode potential also decreases, while peak power density increases from 80.6 to 183.3 mW/m2. At 45 ℃, the electrochemical activity of microbes declines, and the peak power density decreases to 36.8 mW/m2. After operating steadily for 6 h, coulombic efficiency and COD removal efficiency reach a maximum of 44.6% and 49.2%, respectively, at 35 ℃ with the substrate concentration of 1 500 mg/L.
  • loading
  • BOND D R, HOLMES D E, TENDER L M, LOVLEY D R. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554): 483-485.
    KIM B H , PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG N T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biot, 2004, 63(6): 672-681.
    LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004, 38(7): 2281-2285.
    ZHANG B G, ZHAO H Z, ZHOU S G, SHI C H, WANG C,NI J R. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresour Technol, 2009, 100(23): 5687-5693.
    MOHAN S V, MOHANAKRSHNA G, SARMA P N. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell[J]. Bioresour Technol, 2010, 101(3): 970-976.
    RODRIGO M A, CANIZARES P, LOBATO J, PAZ R, SEZ C, LINARES J J. Production of electricity from the treatment of urban waste water using a microbial fuel cell[J]. J Power Sources, 2007, 169(1): 198-204.
    MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004, 38(21): 5809-5814.
    ZUO Y, MANESS P C, LOGAN B E. Electricity production from steam-exploded corn stover biomass[J]. Energy Fuel, 2006, 20(4): 1716-1721.
    GIL G C, CHANGI S, KIM B H, KIM M, JANG J K, PARK H S, KIM H J. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors Bioelectron, 2003, 18(4): 327-334.
    GONZALEZ DEL CAMPO A, LOBATO J, CAIZARESB P, RODRIGO M A, FERNANDEZ MORALESA F J. Short-term effects of temperature and COD in a microbial fuel cell[J]. Appl Energy, 2013, 101: 213-217.
    MIN B, ROMN O B, ANGELIDAKI I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance[J]. Biotechnol Lett, 2008, 30(7): 1213-1218.
    JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected tovariation in pH, temperature, external load and substrate concentration[J]. Bioresour Technol, 2009, 100(2): 717-723.
    LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Tech, 2005, 39(14): 5488-5493.
    LARROSA-GUERRERO A, SCOTT K, HEAD I M, MATEO F, GINESTA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.
    PATIL S A, HARNSICH F, KAPADNIS B, SCHRDER U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance[J]. Biosensors Bioelectron, 2010, 26(2): 803-808.
    赵煜, 李鹏, 王晓斌, 孙彦平. 微生物燃料电池中生物膜成长对电池电化学性能的影响[J]. 燃料化学学报, 2012, 40(8): 967-972.

    (ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972.)
    LOGAN B E, FLEURY R C. Multiphasic kinetics can be an artifact of the assumption of saturable kinetics for microorganisms[J]. Mar Ecol Prog Ser, 1993, 102: 115-124.
    KIM J R,PREMIER G C,HAWKES F R,RODRGUEZB J, DINSDALEB R M, GUWYB A J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresour Technol, 2010, 101(4): 1190-1198.
    HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbio, 2004, 70(2): 921-928.
    GRALNICK J A, NEWMAN D K. Extracellular respiration[J]. Mol Microbio, 2007, 65(1): 1-11.
    RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbio, 2004, 70(9): 5373-5382.
    CHEN S A, LIU H, LOGAN B E. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells[J]. Environ Sci Technol, 2006, 40(1): 364-369.
    [JP4]LOGAN B E, HAMELERS B, ROZENDAL R. Microbial fuel cells: Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.[JP]
    [JP5]SCHRDER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Phys Chem Chem Phys, 2007, 9(21): 2619-2629.[JP]
    AELTERMAN P, FREGUIA S, KELLER J, VERSTRARTE W, RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbio Biotechnol, 2008, 78(3): 409-418.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (858) PDF downloads(750) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return