Volume 42 Issue 05
May  2014
Turn off MathJax
Article Contents
GUO Hai-yan, REN Jun, FENG Gang, LI Chang-sheng, PENG Xing, CAO Duan-lin. Distribution of Al and adsorption of NH3 in mordenite:A computational study[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 582-590.
Citation: GUO Hai-yan, REN Jun, FENG Gang, LI Chang-sheng, PENG Xing, CAO Duan-lin. Distribution of Al and adsorption of NH3 in mordenite:A computational study[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 582-590.

Distribution of Al and adsorption of NH3 in mordenite:A computational study

Funds:  Supported by the National Science Foundation of China (21371159), the Natural Science Foundation of Shanxi Province (2009011014) and Shenzhen Strategic Emerging Industries Special Fund Program of China (GGJS20120619101655715).
  • Received Date: 2013-10-31
  • Rev Recd Date: 2014-01-07
  • Publish Date: 2014-05-30
  • Dispersion corrected density functional theory (DFT-D2) were employed to investigate the distribution of Al in the framework of H-[Al]MOR and the strengths of Brönsted acid sites by NH3 adsorption. Thermodynamically, the most favorable site for distribution of Al is T2O5, followed by T4O2, T1O7 and T3O1, which are a little higher in energy when Al is incorporated. It was found that the energy differences for Al in different T sites are 0.03~ 0.07 eV, indicating that the Al atoms might distribute in all kinds of four non-equivalent crystallographic tetrahedral sites of MOR. Moreover, it is also suggested that the location of protons plays an important role in the stability of the Al substitution site. In addition, we also computed the adsorption energies for NH3 adsorbed at each crystallographic position of H-[Al]MOR by DFT and DFT-D2, respectively. By comparison, the DFT method always underestimates the substitution energy by 0.41 eV for the adsorption of NH3, indicating that the dispersion correction is necessary to calculate the adsorption of NH3 in H-[Al]MOR. The results show that the Brönsted acid site at T2O5 is stronger than the other acid sites, and the adsorption of NH3 on the Lewis acid sites is clearly weaker than on the Brönsted acid sites.
  • loading
  • BURBIDGE B W, KEEN I M, EYLES M K. Physical and catalytic properties of the zeolite mordenite[M]. In: Molecular Sieve Zeolites-II. Adv Chem Ser, 1971, 102: 400-409.

    LEACH H. Application of molecular sieve zeolites to catalysis[J]. Annu Rep Pro Chem Sect A: Inorg Chem, 1971, 68: 195-219.

    BUSCA G. Acid catalysts in industrial hydrocarbon chemistry[J]. Chem Rev, 2007, 107(11): 5366-5410.

    NIWA M, SUZUKI K, KATADA N, KANOUGI T, ATOGUCHI T . Ammonia IRMS-TPD study on the distribution of acid sites in mordenite[J]. J Phys Chem B, 2005, 109(40): 18749-18757.

    MARIE O, MASSIANI P, THIBAULT-STARZYK F. Infrared evidence of a third brønsted site in mordenites[J]. J Phys Chem B, 2004, 108(16): 5073-5081.

    BAJPAI P K, RAO M S, GOKHALE K. Synthesis of mordenite type zeolites[J]. Ind Eng Chem Prod Res Dev, 1978, 17(3): 223-227.

    BAJPAI P K. Synthesis of mordenite type zeolite[J]. Zeolites, 1986, 6(1): 2-8.

    ALBERTI A. Location of Brønsted sites in mordenite[J]. Zeolites, 1997, 19(5/6): 411-415.

    ALBERTI A, DAVOLI P, VEZZALINI G. The crystal structure refinement of a natural mordenite[J]. Z Kristallogr -Cryst Mater, 1986, 175(3/4): 249-256.

    LIU B, GARCÍA-PÍREZ E, DUBBELDAM D, SMIT B, CALERO S. Understanding aluminum location and non-framework ions effects on alkane adsorption in aluminosilicates: A molecular simulation study[J]. J Phys Chem C, 2007, 111(28): 10419-10426.

    BAN S, VLUGT T J H. Adsorption and diffusion of alkanes in Na-MOR: Modeling the effect of the aluminum distribution[J]. J Chem Theory Comput, 2009, 5(10): 2858-2865.

    RAMACHANDRAN C E, WILLIAMS B A, VAN BOKHOVEN J A, MILLER J T. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: Implications for catalytic activity[J]. J Catal, 2005, 233(1): 100-108.

    BRÄNDLE M, SAUER J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites[J]. J Am Chem Soc, 1998, 120(7): 1556-1570.

    DEMUTH T, HAFNER J, BENCO L, TOULHOAT H. Structural and acidic properties of mordenite. An ab initio density-functional study[J]. J Phys Chem B, 2000, 104(19): 4593-4607.

    OUMI Y, KANAI T, LU B, SANO T. Structural and physico-chemical properties of high-silica mordenite[J]. Micropor Mesopor Mater, 2007, 101(1/2):127-133.

    YUAN S, WANG J, LI Y, PENG S. Siting of B, Al, Ga or Zn and bridging hydroxyl groups in mordenite: an ab initio study[J]. J Mol Catal A: Chem, 2001, 175(1/2):131-138.

    MAACHE M, JANIN A, LAVALLEY J C, BENAZZI E. FT infrared study of Brnsted acidity of H-mordenites: Heterogeneity and effect of dealumination[J]. Zeolites, 1995, 15(6): 507-516.

    LAMBEROV A A, KUZNETSOV A M, SHAPNIK M S, MASLIY A N, BORISEVICH S V, ROMANOVA R G, EGOROVA S R. Quantum-chemical investigation of the formation of Lewis acid centers of high-siliceous zeolites[J]. J Mol Catal A: Chem, 2000, 158(1): 481-486.

    FENG G, LIAN Y Y, YANG D Q, LIU J W, KONG D J. Distribution of Al and adsorption of NH3 and pyridine in ZSM-12: A computational study[J]. Can J Chem, 2013, 91(10): 925-934.

    ELANANY M, VERCAUTEREN D P, KOYAMA M, KUBO M, SELVAM P, BROCLAWIK E, MIYAMOTO A. H-MOR: Density functional investigation for the relative strength of Brnsted acid sites and dynamics simulation of NH3 protonation-deprotonation[J]. J Mol Catal A: Chem, 2006, 243(1): 1-7.

    DÍAZ L, SIERRAALTA A, NASCIMENTO MAC, A[WTBZ]Й[WTB1]EZ R. Evaluation of Brnsted sites inside the H-MOR employing NH3: A theoretical study[J]. J Phys Chem C, 2013, 117(10): 5112-5117.

    HUO H, PENG L, GAN Z, GREY C P. Solid-state MAS NMR studies of Brnsted acid sites in zeolite H-mordenite[J]. J Am Chem Soc, 2012, 134(23): 9708-9720.

    BLUMENFELD A L, COSTER D, FRIPIAT J J. Broensted acid sites and surface structure in zeolites: A high-resolution 29Si NMR REDOR study[J]. J Phys Chem, 1995, 99(41): 15181-15191.

    JACOBS W, DE HAAN J, VAN DE VEN L, VAN SANTEN R. Interaction of ammonia with Brnsted acid sites in different cages of zeolite Y as studied by proton MAS NMR[J]. J Phys Chem, 1993, 97(40): 10394-10402.

    JACOBS W P J H, VAN WOLPUT J H M C, VAN SANTEN R A. An in situ Fourier transform infrared studyof zeolitic vibrations: Dehydration, deammoniation, and reammoniation of ion-exchanged Y zeolites[J]. Zeolites, 1993, 13(3): 170-182.

    KRESSE G, FURTHM LLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50.

    KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186.

    KERBER T, SIERKA M, SAUER J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory[J]. J Comput Chem, 2008, 29(13): 2088-2097.

    GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J Comput Chem, 2006, 27(15): 1787-1799.

    PERDEW JP, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865-3868.

    BLÖCHL P E, FÖRST C, SCHIMPL J. Projector augmented wave method: ab initio molecular dynamics with full wave functions[J]. Bull Mater Sci, 2003, 26(1): 33-41.

    BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24):17953-17979.

    REN L M, GUO Q, ZHANG H Y, ZHU L F, YANG C G, WANG L, MENG X J, FENG Z C, LI C, XIAO F S. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals[J]. J Mater Chem, 2012, 22(14): 6564-6567.

    ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73(20): 205101.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (829) PDF downloads(1236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return