Volume 42 Issue 05
May  2014
Turn off MathJax
Article Contents
WANG Qing-song, LI Gong, GUO Jian-qiao, HUANG Min-jian. Catalytic performance of boron-containing Na-B-ZSM-5 molecular sieves in methanol dehydrogenation to formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 616-624.
Citation: WANG Qing-song, LI Gong, GUO Jian-qiao, HUANG Min-jian. Catalytic performance of boron-containing Na-B-ZSM-5 molecular sieves in methanol dehydrogenation to formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2014, 42(05): 616-624.

Catalytic performance of boron-containing Na-B-ZSM-5 molecular sieves in methanol dehydrogenation to formaldehyde

  • Received Date: 2013-10-29
  • Rev Recd Date: 2014-01-20
  • Publish Date: 2014-05-30
  • Na-B-ZSM-5 molecular sieves were synthesized by hydrothermal method with silica white as silicon source, boric acid as boron source, sodium hydroxide as alkali, and tetrapropylammonium bromide (TPABr) and 1,6-hexamethylenediamine (HMDA) as the hybrid template. The synthesized Na-B-ZSM-5 samples were characterized by XRD, SEM, FT-IR, UV-vis, 11B MAS NMR and NH3-TPD. Their catalytic performance in methanol dehydrogenation to formaldehyde was evaluated in a fixed-bed reactor under atmospheric pressure and the effects of the catalyst preparation parameters like Si/B molar ratio, basicity, crystallization temperature and crystallization time as well as the reaction conditions like temperature and space velocity (WHSV) on the methanol dehydrogenation behavior were investigated. The results indicated that boron atoms are introduced into the framework of Na-B-ZSM-5 molecular sieves, present as the Bronsted acid sites from four-coordinated boron atoms and Lewis acid sites from tricoordinated boron atoms. Na-B-ZSM-5 molecular sieves contain more weak acid sites and less middle-strong acid sites. The optimized preparation parameters of the Na-B-ZSM-5 molecular sieve are as follows: 7.5 of Si/B molar ratio, 0.14 of Na2O/SiO2 molar ratio, 170 ℃ of crystallization temperature and 48 h of crystallization time. The conversion of methanol and the selectivity to formaldehyde reach 62.97% and 68.86%, respectively, under the reaction conditions of 550 ℃ and a WHSV of 1.85 h-1 over the optimized Na-B-ZSM-5 molecular sieve.
  • loading
  • 任丽萍, 戴维林, 曹勇, 李和兴, 章文华, 范康年. 甲醇脱氢制无水甲醛的高活性Ag-SiO2-Al2O3催化剂[J]. 化学学报, 2003, 61(6): 937-940. (REN Li-ping, DAI Wei-lin, CAO Yong, LI He-xing, ZHANG Wen-hua, FAN Kang-nian. Highly active Ag-SiO2-Al2O3 catalyst used for the dehydrogenation of methanol to anhydrous formaldehyde[J]. Acta Chimica Sinica, 2003, 61(6): 937-940.)
    王保伟, 郭媛媛, 张旭, 许根慧. 甲醇直接脱氢制甲醛催化剂研究进展[J]. 化工进展, 2009, 28(3): 390-394. (WANG Bao-wei, GUO Yuan-yuan, ZHANG Xu, XU Gen-hui. Progress of catalysts for direct dehydrogenation of methanol to formaldehyde[J]. Chemical Industry and Engineer Progress, 2009, 28(3): 390-394.)
    DAI W L, CAO Y, REN L P. Ag-SiO2-Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol[J]. J Catal, 2004, 228(1): 80-91.
    REN L P, DIA W L, YANG X L. Novel highly active Ag-SiO2-Al2O3-ZnO catalyst for the production of anhydrous HCHO from direct dehydrogenation of CH3OH[J]. Appl Catal A: Gen, 2004, 273(1/2): 83-88.
    张跃, 崔志强, 严生虎, 刘建武, 沈介发. Zn-ZrO2/SiO2非氧化脱氢制无水甲醛的研究[J]. 天然气化工, 2011, 36(1): 16-19. (ZHANG Yue, CUI Zhi-qiang, YAN Sheng-hu, LIU Jian-wu, SHEN Jie-fa. Nonoxidative methanol dehydrogenation to anhydrous formaldehyde over Zn-ZrO2/SiO2 catalyst[J]. Natural Gas Chemical Industry, 2011, 36(1): 16-19.)
    MUSIC A, BATISTA J, LEVER J. Gas-phase catalytic of methanol to formaldehyde over ZnO/SiO2 based catalysts zeolites and phosphates[J]. Appl Catal A: Gen, 1997, 165(1/2): 115-131.
    李勇斌. 甲醇直接脱氢制无水甲醛含钠化合物催化性能的研究[D]. 太原: 太原理工大学, 2005. (LI Yong-bin. The study of sodium containing catalysis for the dehydrogenation of methanol to water-free formaldehyde[D]. Taiyuan: Taiyuan University of Technology, 2005.)
    杨怀旺, 申峻, 李勇斌, 王志忠. 甲醇脱氢制甲醛反应中Na2CO3催化剂的失活与再生[J]. 天然气化工, 2006, 31(3): 27-30. (YANG Huai-wang, SHEN Jun, LI Yong-bin, WANG Zhi-zhong. Deactivation and regeneration of sodium carbonate catalyst during methanol dehydrogenation for formaldehyde production[J]. Natural Gas Chemical Industry, 2006, 31(3): 27-30.)
    MATSUMURA Y, HASHIMOTO K, YOSHIDA S. Dehydrogenation of methanol to formaldehyde over silicalite[J]. J Catal, 1986, 100(2): 392-400.
    MUSIC A, BATISTA J, LEVEC J. Gas-phase catalytic dehydrogenation of methanol to formaldehyde over ZnO/SiO2 based catalysts, zeolites and phosphates[J]. Appl Catal A: Gen, 1997, 165(1/2): 115-131.
    李工, 黄敏建, 顾浩. 一种用于甲醇脱氢制备甲醛的新型催化剂及其制备方法和应用: 中国, 102941112A[P]. 2013-2-27. (LI Gong, HUANG Min-jian, GU Hao. A new catalyst for methanol dehydrogenation to formaldehyde and its preparation and application: CN, 102941112A[P]. 2013-2-27.)
    任永利, 刘国柱, 米镇涛. 杂原子进入分子筛骨架结构的波谱学判据[J]. 化学通报, 2004, (6): 433-438. (REN Yong-li, LIU Guo-zhu, MI Zhen-tao. An introduction on spectroscopy identification of framework hetero-atom in molecular sieves[J]. Chemistry, 2004, (6): 433-438.)
    高健. 以B-ZSM-5为母体气固相法合成Ti-ZSM-5的研究[D]. 大连: 大连理工大学, 2010. (GAO Jian. The studies on the gas-solid synthesis of Ti-ZSM-5 with B-ZSM-5 as the precursor[D]. Dalian: Dalian University of Technology, 2010.)
    陈连璋, 冯益庆. 焙烧温度对杂原子B, Al-ZSM-5沸石催化反应性能的影响[J]. 石油学报(石油加工), 1992, 8(1): 33-37. (CHEN Lian-zhang, FENG Yi-qing. Effect of calcination temperature on catalytic properties of B, Al-ZSM-5 zeolite catalyst[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1992, 8(1): 33-37.)
    GABELICA Z, DEBRAS G, NAGY B. Incorporation of boron in tetrahedral sites of ZSM-5 framework during crystallization: A high resolution solid state MAS 11B-NMR study[J]. Stud Surf Sci Catal, 1984, (19): 113-121.
    LIU H, ERNST H, FREUDE D. In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J]. Microporous Mesoporous Mater, 2002, 54(3): 319-330.
    肖何, 高俊华, 胡津仙, 章斌, 刘平, 张侃. 酸碱改性HZSM-5分子筛上甲醇制取均四甲苯的研究[J]. 燃料化学学报, 2013, 41(1): 102-109. (XIAO He, GAO Jun-hua, HU Jin-xian, ZHANG Bin, LIU Ping, ZHANG Kan. Synthesis of durene from methanol over alkali and acid modified HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 102-109.)
    LUISA P, FRANCESCA B, PABLO B, MORTEN B, ADRIANO Z, SILVIA B. Conversion of methanol to hydrocarbons: Spectroscopic characterization of carbonaceous species formed over H-ZSM-5[J]. J Phys Chem, 2008, 112(26): 9710-9716.
    尹建军, 邢伟静, 李玉波, 张佼, 张忠东, 高雄厚. 晶粒大小的影响因素[J]. 分子催化, 2012, 26(2): 162-168. (YIN Jian-jun, XING Wei-jing, LI Yu-bo, ZHANG Jiao, ZHANG Zhong-dong, GAO Xiong-hou. The influence factors of the crystallinity and crystal size of ZSM-5 zeolite[J]. Journal of Molecular Catalysis(China), 2012, 26(2): 162-168.)
    KUMAR N, NIEMINEN V, DEMIRKAN K. Effect of synthesis time and mode of stirring on physico-chemical and catalytic properties of ZSM-5 zeolite catalysts[J]. Appl Catal A: Gen, 2002, 235(1/2): 113-123.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (876) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return