Volume 42 Issue 06
Jun.  2014
Turn off MathJax
Article Contents
TANG Xiao-bo, NORITATSU Tsubaki, XIE Hong-juan, HAN Yi-zhuo, TAN Yi-sheng. Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2014, 42(06): 704-709.
Citation: TANG Xiao-bo, NORITATSU Tsubaki, XIE Hong-juan, HAN Yi-zhuo, TAN Yi-sheng. Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2014, 42(06): 704-709.

Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis

  • Received Date: 2014-02-27
  • Rev Recd Date: 2014-04-27
  • Publish Date: 2014-06-30
  • A series of Cu-ZnO-based catalysts modified with Al, Zr, and Ce for the low-temperature methanol synthesis were prepared through co-precipitation and characterized by N2 sorption, H2-TPR, CO2-TPD, N2O titration, XRD, and high-resolution TEM; the effect of various modifiers and calcination temperature on their catalytic performance in methanol synthesis at 170 ℃ was investigated. The results showed that the Cu-ZnO-based catalyst modified with ZrO2, among the various modifiers, exhibits the highest activity. Meanwhile, a lower calcination temperature is propitious to get a higher Cu dispersion, a smaller Cu crystal size, and a higher low temperature activity for methanol synthesis; as a result, the uncalcined catalyst exhibits excellent catalytic performance, with a productivity of 106.02 g/(kg·h) and a selectivity of 87.04% to methanol.
  • loading
  • 唐宏青, 相宏伟. 煤化工工艺技术评述与展望Ⅲ. 合成甲醇装置大型化与国产化[J]. 燃料化学学报, 2001, 29(3): 193-200. (TANG Hong-qing, XIANG Hong-wei. Perspectives on R&D in coal chemical industry Ⅲ. Setup of domestic large-scale installation for methanol production[J]. Coal Conversion, 2001. 29(3): 193-200.)
    储伟, 吴玉塘, 罗仕忠. 低温甲醇液相合成催化剂及工艺的研究进展[J]. 化学进展, 2001, 13(2): 128-134. (CHU Wei, WU Yu-tang, LUO Shi-zhong. Investigation on the catalysts and reaction process for the methanol synthesis at lower-temperature in liquid phase[J]. Progress in Chemistry, 2001, 13(2): 128-134.)
    GRAAF G H, SIJTSEMA P J J M, STAMSUIS E J, JOOSTEN G E H. On chemical equilibria in methanol synthesis[J]. Chem Eng Sci, 1990, 45(3): 769-770.
    SAPIENZA R S, SLEGEIR W A, DEVINDER M. Low temperature catalysts for methanol production: US, 4619946[P]. 1986-10-28.
    HU B S, FUJIMOTO K. Promoting behaviors of alkali compounds in low temperature methanol synthesis over copper-based catalyst[J]. Appl Catal B: Environ, 2010, 95(3/4): 208-216.
    HU B S, YAMAGUCHI Y, FUJIMOTO K. Low temperature methanol synthesis in alcohol solvent over copper-based catalyst[J]. Catal Commun, 2009, 10(12): 1620-1624.
    SHI L, YANG G H, TAO K, YONEYAMA Y, TAN Y S, TSUBAKI N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis[J]. Acc Chem Res, 2013, 46(8): 1838-1847.
    YANG R Q, YU X C, ZHANG Y, LI W Z, TSUBAKI N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008, 87(4/5): 443-450.
    YANG R Q, FU L, ZHANG Y, TSUBAKI N. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter[J]. J Catal, 2004, 228(1): 23-35.
    TSUBAKI N, ITO M, FUJIMOTO K. A new method of low-temperature methanol synthesis[J]. J Catal, 2001, 197(1): 224-227.
    RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and over catalysts: Part I. Steady-state studies[J]. J Catal, 2005, 233(1): 198-209.
    ARENA F A, MEZZATESTA G, ZAFARANA G, TRUNFIO G, FRUSTERI F, SPADARO L. Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. J Catal, 2013, 300: 141-151.
    GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011, 12(12): 1095-1098.
    GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010, 271(2): 178-185.
    GAO P, LI F, XIAO F K, ZHAO N, SUN N N, WEI W, ZHONG L S, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298(0):51-60.
    郭宪吉, 陈炳义, 鲍改玲, 李利民. 不同制备方式的铜基甲醇合成催化剂的性质和结构研究[J]. 天然气化工, 2003, 28(2): 9-13. (GUO Xian-ji, CHEN Bing-yi, BAO Gai-ling, LI Li-min. Structure and properties of copper-based catalysts for methanol synthesis prepared by different precipitation methods[J]. Natural Gas Chemical Industry, 2003, 28(2): 9-13.)
    张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰. 不同制备方式的铜基甲醇合成催化剂的性质和结构研究[J]. 催化学报, 2012, 33(12):1958-1964. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chinese Journal of Catalysis, 2012, 33(12): 1958-1964.)
    SHI L, ZENG L Y, JIN Y Z, WANG T J, TSUBAKI N. A sol-gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis[J]. Catal Sci Technol, 2012, 2(12): 2569-2577.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (877) PDF downloads(588) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return