Volume 42 Issue 09
Sep.  2014
Turn off MathJax
Article Contents
MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on the performance of Ni-Mo/ZSM-5 catalyst in thioetherfication[J]. Journal of Fuel Chemistry and Technology, 2014, 42(09): 1128-1134.
Citation: MA Jian, LIU Dong-mei, WEI Min, WANG Hai-yan, WANG Kun, ZHANG Jing-wei. Effect of Na2CO3 solution treatment on the performance of Ni-Mo/ZSM-5 catalyst in thioetherfication[J]. Journal of Fuel Chemistry and Technology, 2014, 42(09): 1128-1134.

Effect of Na2CO3 solution treatment on the performance of Ni-Mo/ZSM-5 catalyst in thioetherfication

  • Received Date: 2014-03-14
  • Rev Recd Date: 2014-06-18
  • Publish Date: 2014-09-30
  • ZSM-5 zeolites were treated by alkali Na2CO3 solution; the effect of treatment temperature and time on the structural feature and physical and chemical properties of ZSM-5 zeolites were investigated. The ZSM-5 samples before and after alkali treatment were characterized by XRD, N2 sorption, XRF, SEM and NH3-TPD. With n-butyl mercaptan and isoprene as the model compounds for thioetherfication, the activity of Ni-Mo/HZSM-5 prepared from alkali treated HZSM-5 zeolites with micro- and meso-porous structure were evaluated. The results show that the original zeolite frame structure is reserved after Na2CO3 solution treatment; moreover, the performance of the Ni-Mo/HZSM-5 catalyst in thioetherfications is improved and the modification process was gentle and controllable. An appropriate increase of the treatment temperature and treatment time was beneficial to the increase of surface area, meso-pore volume and average pore size, as well as the regulation of the acid properties without affecting the microporous structure. However, excessive long treatment time was disadvantageous to the formation of mesopores and the modulation of acidity. The Ni-Mo/HZSM-5 catalyst from ZSM-5 treated with Na2CO3 solution at 90℃ for 5 h exhibits high thioetherfication performance; the conversions of n-butyl mercaptan and isoprene reach 92.36% and 97.33%, respectively.
  • loading
  • HEARN D. Process for the removal of mercaptans and hydrogen sulfide from hydrocarbon streams: US, 5510568. 1996-04-23.
    PODREBARAC G G, GILDERT G R. Process for sulfur reduction in naphtha sreams: US, 6444118. 2002-09-03.
    HEARN D, GILDERT G R, PUTMAN H M. Process for removal of mercaptans from hydrocarbon streams: US, 6440299. 2002-10-27.
    申志兵, 柯明, 宋昭峥, 蒋庆哲. 硫醚化脱除FCC汽油中硫醇和二烯烃研究进展[J]. 化学工业与工程, 2010, 27(6): 544-550. (SHEN Zhi-bing, KE Ming, SONG Zhao-zheng, JIANG Qing-zhe. Review for thioetherification in reducing mercaptan and diene of FCC gasoline[J]. Chemical Industry and Engineering, 2010, 27(6): 544-550.)
    DEBUISSCHERT Q. Prime-G+ commercial performance of FCC naphtha desulfurization technology. San Antonio: 2003 NPRA Annual Meeting, 2003.
    ROCK K, SHOREY S. Producing low sulfur gasoline reliably. San Antonio: 2003 NPRA Annual Meeting, 2003.
    董海明, 曲云, 孙丽琳. Prime-G+技术在催化裂化汽油加氢脱硫装置上的应用[J]. 石油炼制与化工, 2012, 43(11): 27-30. (DONG Hai-ming, QU Yun, SUN Li-lin. Application of Prime-G+ technology in FCC naphtha hydrodesulfurization unit[J]. Petroleum Processing and Petrochemicals, 2012, 43(11): 27-30.)
    张星, 孙方宪, 尹恩杰, 许新刚. CDHydro/CDHDS FCC汽油选择性加氢脱硫工艺设计[J]. 炼油技术与工程, 2010, 40(1): 6-9. (ZHANG Xing, SUN Fang-xian, YIN En-jie, XU Xin-gang. Process design of CDHydro and CDHDS for selective hydrodesulfurization of FCC naphtha[J]. Petroleum Refinery Engineering, 2010, 40(1): 6-9.)
    肖招金, 黄星亮. 镍基催化剂上硫醇与异戊二烯硫醚化反应的研究[J]. 分子催化, 2005, 19(4): 280-284. (XIAO Zhao-jing, HUANG Xing-liang. Study of mercaptans and isoprene thioetherfication reaction on nickel catalyst[J]. Journal of Molecular Catalysis, 2005, 19(4): 280-284.)
    肖招金, 黄星亮, 童宗文. 制备条件对二烯硫醚化催化剂Ni/Al2O3催化性能的影响[J].石油炼制与化工, 2006, 37(5): 24-28. (XIAO Zhao-jin, HUANG Xing-liang, HUANG Zong-wen. Effect of preparation conditions on the catalytic properties of Ni catalyst in the diene thioetherfication reaction[J]. Petroleum Processing and Petrochemicals, 2006, 37(5): 24-28.)
    申志兵, 柯明, 刘基扬. Ni/Al2O3对硫醇与异戊二烯硫醚化反应的催化性能研究[J]. 石油炼制与化工, 2010, 41(11): 37-42. (SHEN Zhi-bing, KE Ming, LIU Ji-yang. Catalytic performance of Ni/Al2O3 catalyst on mercaptan and isoprene thioetherifation[J]. Petroleum Processing and Petrochemicals, 2010, 41(11): 37-42.)
    周志远, 黄星亮, 张燕, 李健. 二烯硫醚化酸性催化剂研究//第十一届全国青年催化会议论文集. 北京: 科学出版社, 2007: 69-70. (ZHOU Zhi-yuan, HUANG Xing-liang, ZHAO Yan, LI Jian. Study of acid catalyst in the diene thioetherfication reaction//The 11th national youth catalytic conference proceedings. Beijing: Science Press, 2007: 69-70.)
    WEI X T, SMIRNIORIS P G. Development and characterization of mesoporosity in ZSM-12 by desilication[J]. Microporous Mesoporous Mater, 2006, 97(1/3): 97-106.
    KADONO T, TAJIMA M, SHIOMURA T, IMAWAKA N, NODA S, KUBOTA T, OKAMOTO Y. Hydrothermal synthesis of giant single crystals of MFI type zeolite: Modified bulk material dissolution method[J]. Microporous Mesoporous Mater, 2008, 115(3): 454-460.
    SUZUKI T, OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microporous Mesoporous Mater, 2001, 43(1): 83-89.
    OGURA M, SHINOMIYA S, TATENO J, NARA Y, NOMURA M, KIKUCHI E, MATSUKATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A: Gen, 2001, 219(3): 33-43.
    GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination[J]. Microporous Mesoporous Mater, 2005, 87(2): 153-161.
    GROEN J C, PEFFER L A A, MOULIJN J A, PÉREZ-RAMÍREZ J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J]. Chem Eur J, 2005, 11(17): 4983-4994.
    MEI C S, WEN P Y, LIU Z C, LIU H X, WANG Y D, YANG W M, XIE Z K, HUA W M, GAO Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008, 258(1): 243-249.
    FATHI S, SOHRABI M, FALAMAKI C. Improvement of HZSM-5 performance by alkaline treatment: Comparative catalytic study in the MTG reaction[J]. Fuel, 2014, 116(1): 529-537.
    GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Alkaline posttreatment of MFI Zeolites. From accelerated screening to scale-up[J]. Ind Eng Chem Res, 2007, 46(12): 4183-4201.
    GROEN J C, ABELLO S, VILLAESCUSA L A. Mesoporous beta zeolite obtained by desilication[J]. Microporous Mesoporous Mater, 2008, 114(1/3): 93-102.
    TAO Y S, KANOH H, ABRAMS L, KANEKO K. Mesopore-modified zeolites: Preparation, characterization, and applications[J]. Chem Rev, 2006, 106(3): 896-910.
    石岗, 林秀英, 范煜, 鲍晓军. ZSM-5分子筛的脱硅改性及加氢改质性能[J]. 燃料化学学报, 2013, 41(5): 589-600. (SHI Gang, LIN Xiu-ying, FAN Yu, BAO Xiao-jun. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 589-600.)
    HOLMBERG B A, WANG H T, YAN Y S. High silica zeolite Y nanocrystals by dealumination and direct synthesis[J]. Microporous Mesoporous Mater, 2004, 74(1/3): 189-198.
    MELIN-CABRERA I, ESPINOSA S, MENTRUIT C, KAPTEIJN F, MOULIJN J A. Alkaline leaching for synthesis of improved Fe-ZSM-5 catalysts[J]. Catal Commun, 2006, 7(2): 100-103.
    MELIN-CABRERA I, ESPINOSA S, GROEN J C, VAN DEN LINDEN B, KAPTEIJN F, MOULIJN J A. Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM-5 and application in N2O decomposition[J]. J Catal, 2006, 238(2): 250-259.
    XIAO F S, WANG L, YIN C, LIN K, DI Y, LI J, XU R, SU D S, SCHIOGL R, YOKOI T, TATSUMI T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem Int Ed, 2006, 45(19): 3090-3093.
    SONG Y Q, FENG Y L, LIU F, KANG C L, ZHOU X L, XU L Y, YU G X. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance[J]. J Mol Catal A: Chem, 2009, 310(1/2): 130-137.
    ZHAO L, XU C M, GAO S, SHEN B J. Effects of concentration on the alkali treatment of ZSM-5 zeolite: A study on dividing points[J]. J Mater Sci, 2010, 45(19): 5406-5441.
    SHETTI V N, KIM J, SRIVASTAVA J R, CHOI M, RYOO R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures[J]. J Catal, 2008, 254(2): 296-303.
    陆红军. FCC催化剂中B酸和L酸的作用[J]. 催化裂化, 1998, 17(2): 13-23. (LU Hong-jun. The effect of acid B and L acid in FCC catalyst[J]. Catalytic Cracking, 1998, 17(2): 13-23.)
    PEREZ-RAMIREZ J, CHRISTENSEN C H, EGEBLAD K, CHRISTENSEN C H, GROEN J C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev, 2008, 37(11): 2530-2542.
    LIU J, ZHANG C X, Shen Z H, HUA W M, TANG Y, SHEN W, Yue Y H, Xu H L, Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun, 2009, 10(11): 1506-1509.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (658) PDF downloads(510) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return