Volume 42 Issue 10
Oct.  2014
Turn off MathJax
Article Contents
GUO Hui-qing, XIE Li-li, WANG Xin-long, LIU Fen-rong, WANG Mei-jun, HU Rui-sheng. Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC[J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 1160-1166.
Citation: GUO Hui-qing, XIE Li-li, WANG Xin-long, LIU Fen-rong, WANG Mei-jun, HU Rui-sheng. Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC[J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 1160-1166.

Sulfur removal and release behaviors of sulfur-containing model compounds during pyrolysis under inert atmosphere by TG-MS connected with Py-GC

Funds:  Supported by Natural Science Foundation of China (21466025), the Natural Science Foundation of Inner Mongolia (2013MS0205) and the State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology(2014).
  • Received Date: 2014-05-20
  • Rev Recd Date: 2014-08-08
  • Publish Date: 2014-10-30
  • Sulfur containing model compounds, tetradecyl mercaptan, dibutyl sulfide, phenyl sulfide, 2-methyl thiophene, benzothiophene and dibenzothiophene, were selected to investigate their sulfur removal and release behaviors during pyrolysis under inert atmosphere by thermo-gravimetric analyzer with mass spectrometer (TG-MS) and pyrolysis connected with gas chromatogram (Py-GC). It was found that the order of sulfur removal was tetradecyl mercaptan > dibutyl sulfide > 2-methyl thiophene > benzo thiophene > phenyl sulfide > dibenzothiophene. Except for phenylsulfide, this rule is contrary to the decomposition temperature order of the sulfur functional groups. SO2 evolution was detected by MS and GC for all those model compounds and COS evolution was also found except for phenylsulfide and dibenzothiophene; while H2S evolution was measured only for tetradecyl mercaptan, dibutyl sulfide and 2-methyl thiophene. However, SO2 content was much higher than H2S and COS in pyrolysis gas for each model compound, which may be caused by that indigenous hydrogen was much less than indigenous oxygen under inert atmosphere, when actived carbon was used as carrier. Thus, most of sulfur radicals can connect with indigenous oxygen and release in the form of SO2. For phenyl sulfide, benzothiophene and dibenzothiophene, as their indigenous hydrogen was not enough to react with sulfur radicals, no H2S was detected during pyrolysis under inert atmosphere, while SO2 was found and its content was very high in pyrolysis gas.
  • loading
  • HUANG C, LINKOUS C A, ADEBIYI O, T-RAISSIET A. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions[J]. Environ Sci Technol, 2010, 44(13): 5283-5288.
    YU J, YIN F, WANG S, CHANG L, GUPTA S. Sulfur removal property of activated-char-supported Fe-Mo sorbents for integrated cleaning of hot coal gases[J]. Fuel, 2013, 108(6): 91-98.
    YU J, CHANG L, XIE W, WANG D. Correlation of H2S and COS in the hot coal gas stream and its importance for high temperature desulfurization[J]. Korean J Chem Eng, 2011, 28(4): 1054-1057.
    XU G, YANG Y, LU S, LI L,SONG X. Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process[J]. Energy Policy, 2011, 39(5): 2343-2351.
    ATTAR A. Chemistry, thermodynamics and kinetics of reactions of sulphur in coal-gas reactions: A review[J]. Fuel, 1978, 57(4): 201-212.
    YAN J, YANG J, LIU Z. SH radical: The key intermediate in sulfur transformation during thermal processing of coal[J]. Environ Sci Technol, 2005, 39(13): 5043-5051.
    MULLENS S, YPERMAN J, REGGERS G, CARLEERA R, BUCHANAN A.C, BRITT P F, RUTKOWSKI P, GRYGLEWICZ G. A study of the reductive pyrolysis behaviour of sulphur model compounds[J]. J Anal Appl Pyrolysis, 2003, 70(2): 469-491.
    MAES II, GRYGLEWICZ G, YPERMAN J, FRANCO DV, D'HAES J, D'OLIESLAEGERS M, VAN POUKE LC. Effect of siderite in coal on reductive pyrolytic analyses[J]. Fuel, 2000, 79(15): 1873-1881.
    MAES II, YPERMAN J, VAN DEN RUL H, FRANCO D V, MULLENS J, VAN POUCKE L C, GRYGLEWICZ G, WILK P. Study of coal-derived pyrite and its conversion products using atmospheric pressure temperature-programmed reduction (AP-TPR)[J]. Energy Fuels, 1995, 9(6): 950-955.
    YI P, YU Q, ZONG H. The chemical thermodynamics analysis of pyrite desulfurization[J]. Coal Convers, 1999, 22(1): 48-52.
    SUGAWARA K, ENDA Y, SUGAWARA T, SHIRAI M. XANES analysis of sulfur form change during pyrolysis of coals[J]. Synchrot Radiat, 2001, 8(2): 955-957.
    MIURA K, MAE K, SHIMADA M, MINAMI H. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energy fuels, 2001, 15(3): 629-636.
    XU L, YANG J, LI Y, LIU Z. Behavior of organic sulfur model compounds in pyrolysis under coal-like environment[J]. Fuel Process Technol, 2004, 85(8): 1013-1024.
    KARR JR C. Analytical methods for coal and coal products[J]. Academic Press,1979, 19(3): 588-624.
    [JP6]KATSUYASU S,KEIKO A, TAKUO S. Dynamic behavior of sulfur forms in rapid pyrolysis of density-separated coals[J]. Fuel, 1995, 74(12): 1823-1829.
    SUGAWARA K, TOZUKA Y, KAMOSHITA T, TAKUO S, MARK A S. Dynamic behaviour of sulfur forms in rapid pyrolysis of density-separated coals[J]. Fuel, 1994, 73(7): 1224-1228.
    LIU F, LI W, CHEN H, LI B. Uneven distribution of sulfurs and their transformation during coal pyrolysis[J]. Fuel, 2007, 86(3): 360-366.
    [JP5]刘粉荣, 郭慧卿, 胡瑞生, 赫淑颖, 胡浩权. 含硫模型化合物在不同载体上的担载及其燃烧过程硫的释放行为[J]. 化工进展, 2012, 31(11): 2570-2573.

    (LIU Fen-rong, GUO Hui-qing, HU Ru-sheng, HE Shu-ying, HU Hao-quan. A study on the loading behavior of sulfur-containg compounds on the different carriers and sulfur release behavior during combustion process[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2570-2573.)
    刘粉荣, 李文, 李保庆, 陈皓侃. 氧化性气氛下流化床中煤的热解脱硫及硫的分布[J]. 燃料化学学报, 2006, 34(4): 404-407.

    (LIU Fen-rong, LI Wen, CHEN Hao-kan, LI Bao-qing. Sulfur removal and its distribution during coal pyrolysis in fluidized bed reactor under oxidative atmospheres[J]. Journal of Fuel Chemistry and Technology, 2006, 34(4): 404-407.)
    LIU F, LI W, CHEN H, LI B. Gas analysis and sulfur removal from coal during fluidized bed pyrolysis under different oxygen contents[C]. 2005 ICCS&T Okinawa, 2005-10.
    刘粉荣, 李文, 郭慧卿, 李保庆, 白宗庆, 胡瑞生. XPS法研究煤表面碳官能团的变化及硫迁移行为[J]. 燃料化学学报, 2011, 39(2): 81-84.

    (LIU Fen-rong, LI Wen, GUO Hui-qing, LI Bao-qing, BAI Zong-qing, HU Rui-sheng. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface[J]. Journal of Fuel Chemistry and Technology, 2011, 39(2): 81-84.)
    LIU F, LI B, LI W, BAI Z, YPERMAN J. Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres[J]. Fuel Process Technol, 2010, 91(11): 1486-1490.
    MAJCHROWICZ. B, YPERMAN. J, MULLENS J, VAN POUCKE. L. Automated potentiometric determination of sulfur functional groups in fossil fuels[J]. Anal Chem, 1991, 63(8): 760-763.
    YPERMAN J, MAES II, VAN DEL RUL H, MULLENS S, VAN AELST J, FRANCO D, JULES M, LUCIEN C, POUCKE V. Sulphur group analysis in solid matrices by atmospheric pressure-temperature programmed reduction[J]. Anal Chim Acta, 1999, 395(1): 143-155.
    VAN AELST J, YPERMAN J, FRANCO D, VAN POUCKE L, BUCHANAN A, BRITT P. Study of silica-immobilized sulfur model compounds as calibrants for the AP-TPR study of oxidized coal samples[J]. Energy Fuels, 2000, 14(5): 1002-1008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (803) PDF downloads(529) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return