Volume 42 Issue 11
Nov.  2014
Turn off MathJax
Article Contents
ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. Journal of Fuel Chemistry and Technology, 2014, 42(11): 1378-1386.
Citation: ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. Journal of Fuel Chemistry and Technology, 2014, 42(11): 1378-1386.

Effect of water vapor on NO reduction by methane over iron

  • Received Date: 2014-06-03
  • Rev Recd Date: 2014-07-25
  • Publish Date: 2014-11-30
  • The effect of water vapor on NO reduction by methane over iron was investigated at 300~1 100 ℃ in an electrically heated ceramic tubular flow reactor in both N2 and simulated flue gas atmospheres. The iron samples before and after reaction were characterized by XRD, SEM and XPS. The results demonstrated that water vapor has a small effect on NO reduction by methane over iron. In N2 atmosphere, water vapor is involved in the oxidation of iron; compared with that in the absence of water vapor, the NO reduction efficiency is decreased slightly when 2.5%~7% water vapor is added into the reaction stream. However, the NO reduction efficiency increases with the increase of water content from 2.5% to 7%, as water vapor may promote the oxidation of iron, forming porous iron surface. Methane is involved in the reduction of the iron oxides, leading to the formation of a dense layer of Fe3O4 and FeO, which may inhabit the interaction of NO with metallic iron and then decrease the NO reduction efficiency, as compared with that without methane. In the simulated flue gas atmosphere, water vapor promotes the NO reduction by methane over iron. When the excess air ratio is 0.7 in reaction zone (SR1) and 1.2 in burnout zone (SR2), the NO reduction efficiency at 1 050 ℃ is 96.7% in the presence of 7% water vapor, compared with the value of 90.6% in the absence of water vapor. SO2 causes a slight decrease of NO reduction. Long term test results showed that over iron at 1 050 ℃ in the simulated flue gas atmosphere containing 7% H2O and 0.02% SO2, NO reduction efficiency remains higher than 90% after reaction for 50 h in the presence of 1.14% methane.
  • loading
  • null
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (522) PDF downloads(443) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return