Volume 43 Issue 03
Mar.  2015
Turn off MathJax
Article Contents
RAN Lei, HUA Jin-ming, WEI Ke-mei. Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 323-330.
Citation: RAN Lei, HUA Jin-ming, WEI Ke-mei. Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2015, 43(03): 323-330.

Effect of calcination temperature on K modified Ag-Fe/ZnO-ZrO2 catalyst structure and its performance for higher alcohols and DME synthesis from CO hydrogenation

  • Received Date: 2014-10-21
  • Publish Date: 2015-03-30
  • A series of K modified Ag-Fe/ZnO-ZrO2 catalysts were prepared by co-precipitation method under different calcination temperatures. The effect of calcination temperature on the catalytic performance for higher alcohols and dimethyl ether(DME) synthesis from CO hydrogenation was investigated. The catalysts were characterized by nitrogen adsorption, XRD, H2-TPR and CO-TPD. The results showed that the catalyst calcined at 250 ℃ could not reach the optimal performance due to insufficient active sites formed at the lower calcination temperature. The catalyst calcined at 300 ℃ exhibited highest CO conversion and higher selectivity of higher alcohols and DME and highest space time yield of higher alcohols and DME reached. As the calcination temperature increased further, the CO conversion decreased, while the selectivity of higher alcohols decreased at first and then increased, the selectivity of DME increased. The catalytic performance of the catalyst was mainly related with its specific surface area, reduction capacity, the dispersion of the σ-AgFeO2 species and CO adsorption-desorption properties. It was proved that the catalyst with larger specific surface area, being easily reduced, higher dispersion of σ-AgFeO2 specie and more CO adsorption active sites, would be helpful for CO hydrogenation conversion. The decrease of the non-dissociative adsorption strength for CO on the surface active sites of the catalyst is favorable for the generation of higher alcohols and DME, while the increase of the dissociative adsorption strength for CO is not favorable for the formation of hydrocarbons.
  • loading
  • SURISRTTY V R, DALAI A K, KOZINSKI J. Alcohols as alternative fuels: An overview[J]. Appl Catal A: Gen, 2011, 404(1/2): 1-11.
    ZHANG L, HUANG Z. Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China[J]. Energy, 2007, 32(10): 1896-1904.
    徐慧远, 储伟, 士丽敏, 张辉, 周俊. 射频等离子体技术制备合成低碳醇用铜钴基催化剂[J]. 物理化学学报, 2008, 24(6): 1085-1089.(XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, ZHOU Jun. Preparation of copper-cobalt catalyst by glow discharge plasma for lower alcohol synthesis[J]. Acta Phys-Chem Sin, 2008, 24(6): 1085-1089.)
    郭强胜, 毛东森, 俞俊, 韩璐蓬. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J]. 燃料化学学报, 2012, 40(9): 1103-1109.(GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9): 1103-1109.)
    罗彩容, 熊莲, 郭海军, 丁飞, 陈新德, 陈勇. 碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J]. 高校化学工程学报, 2012, 26(5): 823-828.(LUO Cai-rong, XIONG Lian, GUO Hai-jun, DING Fei, CHEN Xin-de, CHEN Yong. Effect of alkali metal addition on Cu-Fe-Co based catalyst for lower alcohols synthesis by CO hydrogenation[J]. J Chem Eng Chin Univ, 2012, 26(5): 823-828.)
    XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A: Chem, 2004, 221(1/2): 51-58.
    XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005, 234(1/2): 75-83.
    HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, LEMONIDOU A A. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Appl Catal A: Gen, 2013, 455: 145-154.
    JACOBS G, RIBEIRO M C, MA W P, JI Y Y, KHALID S, SUMODJO P T A, DAVIS B H. Group 11 (Cu, Ag, Au) promotion of 15%Co/Al2O3 Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen, 2009, 361(1/2): 137-151.
    THANI J, JACOBS G, MAW P, WILSON D S, MUTHU K G, GAO P, BOONYARACH K, DAVIS B H, JENNIFER L S K, YEN C H, CRONAUER D C, JEREMY K A, MARSHALL C L. Fischer-Tropsch synthesis: Comparisons between Pt and Ag promoted Co/Al2O3 catalysts for reducibility, local atomic structure, catalytic activity, and oxidation-reduction (OR) cycles[J]. Appl Catal A: Gen, 2013, 464-465: 165-180.
    THANI J, JACOBS G, SHAFER W D, PENDYALA V R R, MA W P, GNANAMANI M K, HOPPS S, THOMAS G A, KITIYANAN B, KHALID S, DAVIS B H. Fischer-Tropsch synthesis: TPR and XANES analysis of the impact of simulated regeneration cycles on the reducibility of Co/alumina catalysts with different promoters (Pt, Ru, Re, Ag, Au, Rh, Ir)[J]. Catal Today, 2014, 228: 15-21.
    CHONCO Z H, FERREIRA A, LODYA L, CLAEYS M, STEEN E V. Comparing silver and copper as promoters in Fe-based Fischer-Tropsch catalysts using delafossite as a model compound[J]. J Catal, 2013, 307: 283-294.
    SUGAWA S, SAYAMA K, OKABE K, ARAKAWA H. Methanol synthesis from CO2 and H2 over silver catalyst[J]. Energy Convers, 1995, 36(6/9): 665-668.
    FROHLICH C, KOPPEL R H, BAIKER A, WOKAUN A. Hydrogenation of carbon dioxide over silver promoted copper-zirconia catalysts[J]. Appl Catal A: Gen, 1993, 106(2): 275-293.
    BAIKER A, KILO M, MACIEJEWSKI M, MENZI S, WOKAUN A. Hydrogenation of CO2 over copper, silver and gold/zirconia catalysts: Comparative study of catalyst properties and reaction pathways[J]. Stud Surf Sci Catal, 1993, 75: 1257-1272.
    WOKAUN A, WEIGEL J, KILO M, BAIKER A. Metal/zirconia catalysts for the synthesis of methanol: Characterization by vibrational spectroscopy[J]. Fresenius J Anal Chem, 1994, 349(1/3): 71-75.
    WEIGEL J, FROHLICH C, BAIKER A, WOKAUN A. Vibrational spectroscopic study of IB metal/zirconia catalysts for the synthesis of methanol[J]. Appl Catal A: Gen, 1996, 140(1): 29-45.
    KOPPEL R A, STOCKER C, BAIKER A. Copper-and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide[J]. J Catal, 1998, 179(2): 515-527.
    SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, STOCH J, SKRZPEK J, LACHOWSKA M. Catalytic activity of the M/(3ZnO-ZrO2) system (M = Cu, Ag, Au) in the hydrogenation of CO2 to methanol[J]. Appl Catal A: Gen, 2004, 278(1): 11-23.
    高中正. 实用催化[M]. 北京: 化学工业出版社, 1996, 232.(GAO Zhong-zheng. Practical catalysis[M]. Beijing: Chemical Industry Press, 1996, 232.)
    赵宁, 杨成, 魏伟, 王太英, 孙予罕, 张静, 谢亚宁, 胡天斗. 焙烧温度对合成低碳醇用Cu/Mn/Ni/ZrO2催化剂性能的影响[J]. 催化学报, 2002, 23(6): 571-574.(ZHAO Ning, YANG Cheng, WEI Wei, WANG Tai-ying, SUN Yu-han, ZHANG Jing, XIE Ya-ning, HU Tian-dou. Effect of calcination temperature on Cu/Mn/Ni/ZrO2 catalyst for synthesis of higher alcohols[J]. Chin J Catal, 2002, 23(6): 571-574.)
    陈敏, 郑小明, 谢玉群. Ag-Fe复合氧化物催化剂上CO的氧化性能[J]. 石油化工, 2000, 29(12): 914-916.(CHEN Min, ZHENG Xiao-ming, XIE Yu-qun. Study of catalytic activity for CO on Ag-Fe composite oxides catalysts[J]. Petrochem Technol, 2000, 29(12): 914-916.)
    从昱, 包信和, 张涛, 孙孝英, 梁东白, 田金忠, 黄宁表. 超细Cu-ZnO-ZrO2催化剂上甲醇合成的TPSR和TPD研究[J]. 燃料化学学报, 2000, 28(3): 238-243.(CONG Yu, BAO Xin-he, ZHANG Tao, SUN Xiao-ying, LIANG Dong-bai, TIAN Jin-zhong, HUANG Ning-biao. TPSR and TPD studies of ultrafine Cu-ZnO-ZrO2 catalysis for methanol synthesis[J]. J Fuel Chem Technol, 2000, 28(3): 238-243.)
    MOROOKA Y, OZAKI A. Rugularities in catalytic properties of metal oxides in propylene oxidation[J]. J Catal, 1966, 5(1): 116-124.
    陈敏, 罗孟飞, 郑小明. Ag-Fe复合氧化物催化剂的结构及还原性能[J]. 应用化学, 1999, 19(1): 50-53.(CHEN Min, LUO Meng-fei, ZHENG Xiao-ming. Structure and reductive characteristics of Ag-Fe complex oxide catalysts[J]. Chin J Appl Chem, 1999, 19(1): 50-53.)
    阮春晓, 陈崇启, 张燕杰, 林性怡, 詹瑛瑛, 郑起. 低温水煤气变换催化剂Cu/ZrO2的制备、表征与性能[J]. 催化学报, 2012, 33(5): 842-849.(RUAN Chun-xiao, CHEN Chong-qi, ZHANG Yan-jie, LIN Xing-yi, ZHAN Ying-ying, ZHENG Qi. Cu/ZrO2 catalyst for low-temperature water-gas shift reaction: Preparation, characterization and performance[J]. Chin J Catal, 2012, 33(5): 842-849.)
    叶丽萍, 詹俊荣, 张荣, 孙蕴婕, 李建龙, 吴向阳, 罗勇. CuO-ZnO-ZrO2催化剂的还原性能及其低温CO催化氧化性能[J]. 精细化工, 2012, 29(11): 1066-1071.(YE Li-ping, ZHAN Jun-rong, ZHANG Rong, SUN Yun-jie, LI Jian-long, WU Xiang-yang, LUO Yong. Reducibility of CuO-ZnO-ZrO2 catalyst and its catalytic performance in carbon monoxide oxidation at low temperature[J]. Fine Chem, 2012, 29(11): 1066-1071.)
    石秋杰, 杨静, 李包友. Co、Mo掺杂对Ni/ZnO-ZrO2催化剂催化噻吩加氢脱硫性能的影响[J]. 分子催化, 2009, 23(2): 130-134.(SHI Qiu-jie, YANG Jing, LI Bao-you. Effect of Co and Mo dopant on the properties of Ni/ZnO-ZrO2 for hydrodesulfurization of thiophene[J]. J Mol Catal (China), 2009, 23(2): 130-134.)
    XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L H, FANG K G, LIN M G, SUN Y H. Advances in bifunctionnal catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013, 34(1): 116-129.
    CHEN C S, CHENG W H, LIN S S. Study of reverse water gas shift reaction by TPD,TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst[J]. Appl Catal A: Gen, 2003, 238(1): 55-67.
    CARVALHO N A, PASSOS F B, SCHMAL M. Quantification of metallic area of high dispersed copper on ZSM-5 catalyst by TPD of H2[J]. Catal Commun, 2002, 3(11): 503-509.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (406) PDF downloads(635) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return