Volume 43 Issue 04
Apr.  2015
Turn off MathJax
Article Contents
PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of the thermal dissolution products of a subbituminous coal at different temperatures[J]. Journal of Fuel Chemistry and Technology, 2015, 43(04): 416-421.
Citation: PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of the thermal dissolution products of a subbituminous coal at different temperatures[J]. Journal of Fuel Chemistry and Technology, 2015, 43(04): 416-421.

Characterization of the thermal dissolution products of a subbituminous coal at different temperatures

  • Received Date: 2014-10-14
  • Publish Date: 2015-04-30
  • The thermal extracts and residues of Shenfu subbituminous coal (SC) obtained from thermal dissolution in 1-methylnaphthalene (1-MN) at different temperatures were characterized by FT-IR, thermo-gravimetric (TG) analysis, GPC and synchronous fluorescence spectrometry. The results show that the thermal extracts contain more amounts of aliphatic compounds than residues. Almost all of the ash is transferred into the residue. TG analysis shows that there exists a significant difference between SC and its residues. With the thermal dissolution temperature increasing from 300 to 360 ℃, the number-average molecular weight of thermal extract increases; however, it decreases at 380 ℃. The condensed aromatic ring number of thermal extract increases with the thermal dissolution temperature rising. When the thermal dissolution of SC was carried out at temperature below initial pyrolysis temperature of SC, the thermal dissolution is dominated by the solvation of 1-MN with coal to break the non-covalent bonds in SC. The light components such as ketone and ester are easy to be released at this temperature. For thermal dissolution carried out above the initial pyrolysis temperature of SC, the pyrolysis of side chains and bridged bonds in SC and condensation reactions of free radicals take place, resulting in an increase of three-fused ring structure in thermal extract.
  • loading
  • TAKANOHASHI T, SHISHIDO T, KAWASHIMA H, SAITO I. Characterisation of Hypercoals from coals of various ranks[J]. Fuel, 2008, 87(4/5):592-598.
    ASHIDA R, NAKAGAWA K, OGA M, NAKAGAWA H, MIURA K. Fractionation of coal by use of high temperature solvent extraction technique and characterization of the fractions[J]. Fuel, 2008, 87(4/5):576-582.
    ASHIIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractionation of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009, 88(8):1485-1490.
    MASSAKI K, YOSHIDA T, LI C, TAKANOHASHI T, SAITO I. The effects of pretreatment and the addition of polar compounds on the production of "HyperCoal" from subbituminous coals[J]. Energy Fuels, 2004, 18(4):995-1000.
    YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. Relationship between thermal extraction yield and softening temperature for coals[J]. Energy Fuels, 2002, 16(4):1006-1007.
    OKUYAMA N, KOMATSU N, SHIGEHISA T, KANEKO T, TSURUYA S. Hyper-coal process to produce the ash-free coal[J]. Fuel Process Technol, 2004, 85(8/10):947-967.
    KIM S D, WOO K J, JEONG S K, RHIM Y J, LEE S H. Production of low ash coal by thermal extraction with N-methyl-2-pyrrolidinone[J]. Korean J Chem Eng, 2008, 25(4):758-763.
    SHUI H, ZHOU Y, LI H, WANG Z, LEI Z, REN S, PAN C, WANG W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013, 108:385-390.
    MIURA K, MAE K, HASEGAWA I, CHEN H, KUMANO A, TAMURA K. Estimation of hydrogen bond distributions formed between coal and polar solvents using in situ IR technique[J]. Energy Fuels, 2002, 16(1):23-31.
    YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. The effect of extraction condition on "HyperCoal" production (1) —under room-temperature filtration[J]. Fuel, 2002, 81(11/12):1463-1469.
    SHI L, LIU Q, GUO X, WU W, LIU Z. Pyrolysis behaviour and bonding information of coal—A TGA study[J]. Fuel Process Technol, 2013, 108:125-132.
    李勇志, 邓先梁, 俞惟乐. 同步荧光光谱法监测按芳环数分离重质油中的芳烃[J]. 燃料化学学报, 1998, 26(3):280-284. (LI Yong-zhi, DENG Xian-liang, YU Wei-le. Application of synchronous fluorescence spectrometry in separation of aromatics by ring number in heavy petroleum fractions[J]. J Fuel Chem Technol, 1998, 26(3):280-284.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (423) PDF downloads(602) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return