Volume 43 Issue 04
Apr.  2015
Turn off MathJax
Article Contents
HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin, TONG Hong. Theoretical study of bond dissociation energies for lignin model compounds[J]. Journal of Fuel Chemistry and Technology, 2015, 43(04): 429-436.
Citation: HUANG Jin-bao, WU Shu-bin, CHENG Hao, LEI Ming, LIANG Jia-jin, TONG Hong. Theoretical study of bond dissociation energies for lignin model compounds[J]. Journal of Fuel Chemistry and Technology, 2015, 43(04): 429-436.

Theoretical study of bond dissociation energies for lignin model compounds

  • Received Date: 2015-01-12
  • Publish Date: 2015-04-30
  • The bond dissociation energies (BDE) of C-O and C-C bond in 63 lignin model compounds for six prevalent linkages (β-O-4, α-O-4, 4-O-5, β-1, α-1 and 5-5) were theoretically calculated by using density functional theory methods B3P86 at 6-31G(d,p) level. The effect of various substituents on BDE and the correlation between the bond lengths and the corresponding BDE were analyzed. The calculation results show that C-O bond is generally weaker than C-C bond, and the average bond dissociation energy of Cα-O (182.7 kJ/mol) is the lowest, and that of Cβ-O is second lowest. The substituent group on both the aromatic and alkyl groups can substantially weaken C-O bonds, and C-O bonds do not exhibit such a strong correlation between C-O bond lengths and BDE. Compared with C-O bonds, BDE of C-C bonds are little affected by the substituent on the aromatic groups, but affected obviously by the substituent on alkyl groups. There is a strong linear relationship between C-C bond lengths and BDE. The BDE are weak when the C-C bond lengths are long.
  • loading
  • AMEN-CHEN C, PAKDEL H, ROY C. Production of monomeric phenols by thermochemical conversion of biomass:A review[J]. Bioresour Technol, 2001, 79(3):277-299.
    谭洪, 王树荣, 骆仲泱, 余春江, 岑可法. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5):710-714. (TAN Hong, WANG Shu-rong, LUO Zhong-yang, YU Chun-jiang, CEN Ke-fa. Experimental study of lignin flash pyrolysis[J]. J Zhejiang Univ (Eng Sci), 2005, 39(5):710-714.)
    HUANG J, LIU C, TONG H, LI W, WU D. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Comput Theor Chem, 2012, 1001:44-50.
    LIU Q, WANG S, ZHENG Y, LUO Z, CEN K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008, 82(1):170-177.
    HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014, 109:98-108.
    邱卫华, 陈洪章. 木质素的结构、功能及高值化利用[J]. 纤维素科学与技术, 2006, 14(1):52-59. (QIU Wei-hua, CHEN Hong-zhang. Structure, function and higher value application of lignin[J]. J Cellul Sci Technol, 2006, 14(1):52-59.)
    蒋挺大. 木质素[M]. 北京:化学工业出版社, 2001. (JIANG Ting-da. Lignin[M]. Beijing:Chemistry Industry Press, 2001.)
    NUNN T R, HOWARD J B, LONGWLL J P, PETERS W A. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin[J]. Ind Eng Chem Process Des Dev, 1985, 24(3):844-852.
    WANG S, WANG K, LIU Q, GU Y, LUO Z, CEN K, FRANSSON T. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnol Adv, 2009, 27(5):562-567.
    JIANG G, NOWAKOWSKI D J, BRIDGWATER A V. A systematic study of the kinetics of lignin pyrolysis[J]. Thermochim Acta, 2010, 498(1/2):61-66.
    CABALLERO J A, FONT R, MARCILLA A. Pyrolysis of Kraft lignin:Yields and correlations[J]. J Anal Appl Pyrolysis, 1997, 39(2):161-183.
    JIANG G, NOWAKOWSKI D J, BRIDGWATER A V. Effect of the temperature on the composition of lignin pyrolysis products[J]. Energy Fuels, 2010, 24(8):4470-4475.
    HUANG J, LI X, WU D, TONG H, LI W. Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound[J]. J Renewable Sustainable Energy, 2013, 5(4):043112.
    BESTE A, BUCHANAN III A C. Computational study of bond dissociation enthalpies for lignin model compounds:Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7):2837-2841.
    CHU S, SUBRAHMANYAM A V, HUBER G W. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound[J]. Green Chem, 2013, 35:125-136.
    BRITT P F, BUCHANAN III A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000, 65(5):1376-1389.
    王华静, 傅尧, 王晨, 郭庆祥. 环境污染物中碳氯键离解能的理论研究[J]. 化学学报, 2008, 66(3):362-370. (WANG Hua-Jing, FU Yao, WANG Chen, GUO Qing-xiang. Theoretical study of homolytic C-Cl bond dissociation enthalpies of environmental pollutants[J]. Acta Chim Sin, 2008, 66(3):362-370.)
    SPEYBROECK V V, MARIN G B, WAROQUIER M. Hydrocarbon bond dissociation enthalpies:From substituted aromatics to large polyaromatics[J]. ChemPhysChem, 2006, 7:2205-2214.
    JOHNSON E R, CLARKIN O J, DILABIO G A. Density functional theory based model calculations for accurate bond dissociation enthalpies. 3. A single approach for X-H, X-X, and X-Y (X, Y=C, N, O, S, Halogen) bonds[J]. J Phys Chem A, 2003, 107(46):9953-9963.
    张芳沛, 程新路, 刘子江, 胡栋, 刘永刚. 硝酸丙酯键离解能和热解机理的密度泛函理论研究[J]. 高压物理学报, 2005, 19(2):189-192. (ZHANG Fang-pei, CHENG Xin-lu, LIU Zi-jiang, HU Dong, LIU Yong-gang. Density functional studies on the bond dissociation energy and pyrolysis mechanism of propyl nitrate[J]. Chin High Pressure Phys, 2005, 19(2):189-192.)
    FRISCH M J, TRVCKS G W, SCHLEGEL H B, et al. Gaussian 03[CP]. Gaussian, Inc. Pittsburgh PA, 2003.
    KIM S, CHMELY S C, NIMLOS M R, BOMBLE Y J, FOUST T D, PATON R S, BECKHAM G T. Computational study of bond dissociation enthalpies for a large range of native and modified lignins[J]. J Phys Chem Lett, 2011, 2(22):2846-2852.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (533) PDF downloads(554) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return