Volume 43 Issue 05
May  2015
Turn off MathJax
Article Contents
FENG Yi-peng, WANG Xiao-bo, ZENG Bi-fan, ZHAO Zeng-li, LI Hai-bin, ZHENG An-qing, HUANG Zhen. Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor[J]. Journal of Fuel Chemistry and Technology, 2015, 43(05): 589-597.
Citation: FENG Yi-peng, WANG Xiao-bo, ZENG Bi-fan, ZHAO Zeng-li, LI Hai-bin, ZHENG An-qing, HUANG Zhen. Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor[J]. Journal of Fuel Chemistry and Technology, 2015, 43(05): 589-597.

Experimental investigation of gasification characteristics of pine powder in an entrained flow gasification reactor

  • Received Date: 2014-10-21
  • Publish Date: 2015-05-30
  • The pine powder gasification was conducted in a bench-scale entrained flow reactor. The influences of temperature,oxygen equivalence ratio and steam/biomass ratio on the composition of the gaseous products, carbon conversion, gas yield, LHV, morphology and composition of solid products were studied. The results show that when the reaction temperature increases gradually, the concentrations of CO and H2 rise dramatically and the concentrations of CO2 and CH4 significantly decrease. The carbon conversion, gas yield, and LHV also improve slightly. With a rise of oxygen equivalence ratio from 0.2 to 0.5, the concentrations of CO and H2 decrease by over 10%, the concentration of CO2 increases by 100%, and the carbon conversion reaches to 92.9%. Simultaneously, the gas yield also increases slightly, while the LHV exhibits opposite trends. When the steam/biomass ratio increases from 0 to 0.58, the H2/CO volume ratio grows gradually from 0.63 to 1.40. At the same time, the carbon conversion, gas yield and LHV first increase slowly then decrease rapidly. The analysis by scanning electron microscopy shows that the solid residue of gasification mainly consists of particles and fiber reunion. With increasing reaction temperature, the shape of particles in the solid residue changes gradually from irregular to spherical, while the higher oxygen equivalence ratio makes the number of pores and slits on particles increase rapidly and leads to the breaking of the particles.
  • loading
  • HOLLADAY J D, HU J, KING D L, WANG Y. An overview of hydrogen production technologies[J]. Catal Today, 2009, 139(3): 244-260.
    TANKSALE A, BELTRAMINI J N, LU G Q M. A review of catalytic hydrogen production processes from biomass[J]. Renew Sus Energy Rev, 2010, 14(1): 166-182.
    WANG A, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Acc Chem Res, 2013, 46(7): 1377-1386.
    DAVDA R R, SHABAKER J W, HUBER G W, CORTRIGHT R D, DUMESIC J A. Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts[J]. Appl Catal B: Environ, 2003, 43(1): 13-26.
    SHABAKER J W, DAVDA R R, HUBER G W, CORTRIGHT R D, DUMESIC J A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts[J]. J Catal, 2003, 215(2): 344-352.
    LIU X, SHEN K, WANG Y, WANG Y, GUO Y, GUO Y, YONG Z, LU G. Preparation and catalytic properties of Pt supported Fe-Cr mixed oxide catalysts in the aqueous-phase reforming of ethylene glycol[J]. Catal Commun, 2008, 9(14): 2316-2318.
    KIM H D, PARK H J, KIM T W, JEONG K E, CHAE H J, JEONG S Y, LEE C H, KIM C U. Hydrogen production through the aqueous phase reforming of ethylene glycol over supported Pt-based bimetallic catalysts[J]. Int J Hydrogen Energy, 2012, 37(10): 8310-8317.
    JEONG K E, KIM H D, KIM T W, KIM J W, CHAE H J, JEONG S Y, KIM C U. Hydrogen production by aqueous phase reforming of polyols over nano- and micro-sized mesoporous carbon supported platinum catalysts[J]. Catal Today, 2014, 232: 151-157.
    KOICHUMANOVA K, VIKLA A K K, DE VLIEGER D J M, SESHAN K, MOJET B L, LEFFERTS L. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen[J]. ChemSusChem, 2013, 6(9): 1717-1723.
    IZQUIERDO U, WICHERT M, KOLB G, BARRIO V L, ZAPF R, ZIOGAS A, NEUBERG S, ARIAS P L, CAMBRA J F. Micro reactor hydrogen production from ethylene glycol reforming using Rh catalysts supported on CeO2 and La2O3 promoted α-Al2O3[J]. Int J Hydrogen Energy, 2014, 39(10): 5248-5256.
    IZQUIERDO U, WICHERT M, BARRIO V L, KOLB G. Sustainable syngas production from ethylene glycol reforming processes using Rh-based catalysts in microreactors[J]. Appl Catal B: Environ, 2014, 152-153: 19-27.
    LIU J, SUN B, HU J, PEI Y, LI H, QIAO M. Aqueous-phase reforming of ethylene glycol to hydrogen on Pd/Fe3O4 catalyst prepared by co-precipitation: Metal-support interaction and excellent intrinsic activity[J]. J Catal, 2010, 274(2): 287-295.
    HUBER G W, SHABAKER J W, EVANS S T, DUMESIC J A. Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts[J]. Appl Catal B: Environ, 2006, 62(3/4): 226-235.
    TUPY S A, CHEN J G, VLACHOS D G. Comparison of ethylene glycol steam reforming over Pt and NiPt catalysts on various supports[J]. Top Catal, 2013, 56(18/20): 1644-1650.
    TUPY S A, KARIM A M, BAGIA C, DENG W, HUANG Y, VLACHOS D G, CHEN J G. Correlating ethylene glycol reforming activity with in situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts[J]. ACS Catal, 2012, 2(11): 2290-2296.
    SHABAKER J W, HUBER G W, DUMESIC J A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J]. J Catal, 2004, 222(1): 180-191.
    SHABAKER J W, SIMONETTI D A, CORTRIGHT R D, DUMESIC J A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies[J]. J Catal, 2005, 231(1): 67-76.
    PAN G, NI Z, CAO F, LI X. Hydrogen production from aqueous-phase reforming of ethylene glycol over Ni/Sn/Al hydrotalcite derived catalysts[J]. Appl Clay Sci, 2012, 58: 108-113.
    VAN HAASTERECHT T, LUDDING C C I, DE JONG K P, BITTER J H. Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions[J]. J Catal, 2014, 319: 27-35.
    ADHIKARI S, FERNANDO S D, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts[J]. Energy Fuels, 2008, 22(2): 1220-1226.
    CHU X, LIU J, SUN B, DAI R, PEI Y, QIAO M, FAN K. Aqueous-phase reforming of ethylene glycol on Co/ZnO catalysts prepared by the coprecipitation method[J]. J Mol Catal A: Chem, 2011, 335(1/2): 129-135.
    SANCHEZ E A, COMELLI R A. Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina[J]. Int J Hydrogen Energy, 2014, 39(16): 8650-8655.
    GUO Y, AZMAT M U, LIU X, WANG Y, LU G. Effect of support’s basic properties on hydrogen production in aqueous-phase reforming of glycerol and correlation between WGS and APR[J]. Appl Energy, 2012, 92: 218-223.
    金明善, 徐秀峰, 翁永根, 索掌怀. CeO2在Al2O3及TiO2载体上的分散[J]. 烟台大学学报(自然科学与工程版), 2003, 16(1): 49-53.(JIN Ming-shan, XU Xiu-feng, WENG Yong-gen, SUO Zhang-huai. Dispersion of CeO2 on Al2O3 and TiO2[J]. J Yantai Univ Nat Sci Eng Ed, 2003, 16(1): 49-53.)
    FRÉTY R, LÉVY P J, PERRICHON V, PITCHON V, PRIMET M, ROGEMOND E, ESSAYEM N, CHEVRIER M, GAUTHIER C, MATHIS F. Preparation of alumina supported ceria. I: Selective measurement of the surface area of ceria and free alumina[J]. Stud Surf Sci Catal, 1995, 96: 405-418.
    PERRICHON V, LAACHIR A, BERGERET G, FRÉTY R, TOURNAYAN L, TOURET O. Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen[J]. J Chem Soc Faraday Trans, 1994, 90(5): 773-781.
    DAMYANOVA S, PEREZ C A, SCHMAL M, BUENO J M C. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002, 234(1/2): 271-282.
    于强强, 董园园, 廖卫平, 金明善, 何涛, 索掌怀, CeO2-Al2O3负载金催化剂用于水煤气变换反应的催化活性[J]. 燃料化学学报, 2010, 38(2): 223-229.(YU Qiang-qiang, DONG Yuan-yuan, LIAO Wei-ping, JIN Ming-shan, HE Tao, SUO Zhang-huai. Preparation of ceria-alumina and catalytic activity of gold catalyst supported on ceria-alumina for water gas shift reaction[J]. J Fuel Chem Technol, 2010, 38(2): 223-229.)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (377) PDF downloads(306) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return