Volume 43 Issue 06
Jun.  2015
Turn off MathJax
Article Contents
LÜ Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 684-691.
Citation: LÜ Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 684-691.

Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts

  • Received Date: 2014-12-19
  • Rev Recd Date: 2015-03-21
  • Publish Date: 2015-06-30
  • Al2O3, CeO2, TiO2 and MgO supported Ni catalysts were prepared by incipient impregnation. The activities in glycerol steam reforming to hydrogen production were evaluated at 300~500 ℃. The catalysts were characterized by XRD, N2 adsorption, TEM, and H2-TPR techniques. A strong effect of support on the activity of Ni catalyst was detected. Ni/CeO2 catalyst gives the highest activity among all catalysts at 400 ℃and the following activity order is shown Ni/CeO2> Ni/Al2O3 > Ni/TiO2 ~ Ni/MgO. On Ni/CeO2, there was almost no deactivation detected after 20 h reaction with 70% conversion of glycerol and 69.2% H2 yield. Good activity and stability of the catalyst is attributed to the intrinsic property of CeO2 and strong interaction between CeO2 and active nickel species. Relatively high glycerol conversion (85.7%) with low H2 selectivity on Ni/Al2O3 catalyst at 500 ℃ is achieved due to its high surface area and large pore volume. The formation of solid solution NiMgO2 phase observed in Ni/MgO catalyst does not show the desired activity at low temperatures though it enhanced the interactions between active phase and the support. Base oxide supports (CeO2, MgO) seem to be more effective than acid oxide supports in preventing the formation of CO and CH4 as by-products.
  • loading
  • 袁冰, 刘天, 于世涛. 基于杂多类离子液体催化体系的甘油氢解反应研究[J]. 燃料化学学报, 2014, 42(10): 1218-1224. (YUAN Bing, LIU Tian, YU Shi-tao. Hydrogenolysis of glycerol over a catalytic system based on heteropoly ionic liquid[J]. J Fuel Chem Technol, 2014, 42(10): 1218-1224.)
    郝顺利, 彭伟才, 赵宁, 肖福魁, 魏伟, 孙予罕, 李海. 不同载体负载Cu催化剂上甘油氢解制1,2-丙二醇催化性能的研究[J]. 燃料化学学报, 2012, 40(5): 594-600. (HAO Shun-li, PENG Wei-cai, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han, LI Hai. Hydrogenolysis of glycerol to 1,2-propanediol over various supported Cu catalysts[J]. J Fuel Chem Technol, 2012, 40(5): 594-600.)
    DOU B, SONG Y, WANG C, CHEN H, XU Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges[J]. Renewable Sustainable Energy Rev, 2014, 30: 950-960
    SILVA J M, SORIA M A, MADEIRA LUIS M. Challenges and strategies for optimization of glycerol steam reforming process[J]. Renewable Sustainable Energy Rev, 2015, 42: 1187-1213
    刘琦, 张鹏博, 王星会, 陈崇启,林性贻,郑起,詹瑛瑛. 甘油水蒸气重整制氢催化剂研究进展[J]. 分子催化, 2012, 26(1): 89-97. (LIU Qi, ZHANG Peng-bo, WANG Xing-hui, CHEN Chong-Qi, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying. Progress on glycerol steam reforming for hydrogen production[J]. J Mol Catal (China), 2012, 26(1): 89-97.)
    POMPEO F, SANTORI G F, NICHIO N N. Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts[J]. Catal Today, 2011, 172(1): 183-188.
    ZHANG B, TANG X, LI Y, XU Y, SHEN W. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J]. Int J Hydrogen Energy, 2007, 32(13): 2367-2373.
    CHIODO V, FRENI S, GALVAGNO A, MONDELLO N, FRUSTERI F. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Appl Catal A: Gen, 2010, 381(1/2): 1-7.
    MENEZES A O, RODRIGUES M T, ZIMMARO A, BORGES L E P, FRAGA M A. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides[J]. Renewable Energy, 2011, 36(2): 595-599.
    NICHELE V, SIGNORETTO M, MENEGAZZO F, GALLO A, SANTO V D, CRUCIANI G, CERRATO G. Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts[J]. Appl Catal B: Environ, 2012, 111-112: 225-232.
    SÁNCHEZ E A, D'ANGELO M A, COMELLI R A. Hydrogen production from glycerol on Ni/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2010, 35(11): 5902-5907.
    CHENG C K, FOO S Y, ADESINA A A. Steam reforming of glycerol over Ni/Al2O3 catalyst[J]. Catal Today, 2011, 178(1): 25-33.
    WANG C, DOU B, CHEN H, SONG Y, XU Y, DU X, LUO T, TAN C. Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor[J]. Chem Eng J, 2013, 220: 133-142.
    BUFFONI I N, POMPEO F, SANTORI G F, NICHIO N N. Nickel catalysts applied in steam reforming of glycerol for hydrogen production[J]. Catal Commun, 2009, 10(13): 1656-1660.
    IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GUEMEZ M B, SANCHEZ-SANCHEZ M C, NAVARRO R M, FIERRO J L G. Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina[J]. Int J Hydrogen Energy, 2010, 35(20): 11622-11633.
    ADHIKARI S, FERNANDO S D, HARYANTO A. Hydrogen production from glycerin by steam reforming over nickel catalysts[J]. Renew Energy, 2008, 33(5): 1097-1100.
    SHAO S, SHI A W, LIU C L, YANG R Z, DONG W S. Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts[J]. Fuel Proc Technol, 2014, 125: 1-7.
    DAVE C D, PANT K K. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst[J]. Renewable Energy, 2011, 36(11): 3195-3202.
    CHEN H, DING Y, CONG N T, DOU B, DUPONT V, GHADIRI M, WILLIAMS P T. A comparative study on hydrogen production from steam-glycerol reforming: Thermodynamics and experimental[J]. Renewable Energy, 2011, 36(2): 779-788.
    ADHIKARI S, FERNANDO S, GWALTNEY S R, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2007, 32(14): 2875-2880.
    CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.
    POMPEOF, SANTORIG, NICHION N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts[J]. Int J Hydrogen Energy, 2010, 35(17): 8912-8920.
    IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GÜEMEZ M B, NAVARRO R M, SÁNCHEZ-SÁNCHEZ M C, FIERRO J L G. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La[J]. Top Catal, 2008, 49(1/2): 46-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (365) PDF downloads(320) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return