Volume 43 Issue 09
Sep.  2015
Turn off MathJax
Article Contents
LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(09): 1100-1105.
Citation: LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(09): 1100-1105.

Analysis of the reaction process in solid oxide direct carbon fuel cell anode

  • Received Date: 2015-02-05
  • Rev Recd Date: 2015-05-07
  • Publish Date: 2015-09-30
  • A direct carbon fuel cell (DCFC) was assembled with yttria stabilized zirconia (YSZ) as electrolyte and active carbon (AC), graphite (G) and semi-coke (SC) were employed as the DCFC fuels. The influences of the carbon fuel pore structure and reactivity, operation temperature, anode atmosphere on the anode reaction were investigated. The results indicated that for three carbonaceous fuels, the performance of DCFC is in the order of AC > SC > G, the same as that for their oxidation reactivity in air or CO2 atmosphere. The reactivity of carbonaceous fuels is determined by their surface oxygenic functional groups and pore structure. Moreover, the results revealed that the DCFC anodic reactions involves the oxidation of C to CO2, the conversion of CO2 to CO via the reverse Boudouard reaction, and the oxidation of CO to CO2.
  • loading
  • DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.
    CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.
    ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.
    GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.
    WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.
    TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.
    ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.
    FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.
    ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.
    LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.
    LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.
    LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.
    NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.
    WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.
    CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.
    DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.
    ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.
    WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.
    SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.
    KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.
    TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (408) PDF downloads(405) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return