Volume 47 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 661-667.
Citation: TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 661-667.

Liquefaction characteristics of Baorixile lignite with syngas and complex solvent

Funds:

Hangzhou Key Laboratory of Green Fine Chemical Engineering Research and Technical Conversion 2015ZD12

More Information
  • Corresponding author: TONG Guo-tong, E-mail: tonggt@163.com
  • Received Date: 2019-03-07
  • Rev Recd Date: 2019-04-12
  • Available Online: 2021-01-23
  • Publish Date: 2019-06-10
  • The effects of atmosphere, temperature and catalysts on the BRXL lignite liquefaction conversion and the yield of oil, gas, and water were studied with syngas and complex solvents (water+organic solvent), and the characteristics of BRXL lignite liquefaction were also discussed. The results show that the atmosphere of syngas and the temperature of 430-450℃ are beneficial to coal liquefaction reaction under complex solvents system with catalyst. The coal conversion is 81.15%, and the yield of oil, gas, and water reaches to 71.53%. Besides, the composite catalyst (including iron, base, and sulfur) can effectively improve the coal conversion and the yield of oil, gas, and water. The coal conversion and the yield of oil, gas, and water at 430℃ reach to 92.27% and 79.39%, respectively. Also, the composite catalyst can effectively promote the cracking of macromolecules in coal and the enhancement of water-gas shift reaction, resulting in a decrease of asphaltene and an increase of oil yield. Moreover, the polycyclic aromatic hydrocarbons and derivatives in liquefaction oil can be converted to monocyclic aromatic hydrocarbons and derivatives and alkenes olefins during catalytic liquefaction, resulting in a decrease of compound molecular weight and an improvement of oil quality.
  • loading
  • [1]
    FISCHER F, SCHRADER H. The origin and chemical structure of coal[J]. Brennstoff Chem, 1921, 2:37-45. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_64cc347441b395ebd16b96675789d27e
    [2]
    ZHU M, WACHS I E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction:A review[J]. ACS Catal, 2016, 6(2):722-732. doi: 10.1021/acscatal.5b02594
    [3]
    BIANCO A D, PIERO G D, SERENELLINI S. Conversion of coal in CO/H2O base system:Interaction between water-gas shift reaction catalysts and coal mineral matter[J]. Fuel, 1988, 67(6):874-875. doi: 10.1016/0016-2361(88)90167-6
    [4]
    TAKEMURA Y, OUCHI K. Catalytic liquefaction of various coals using a mixture of carbon monoxide and water[J]. Fuel, 1983, 62(10):1133-1137. doi: 10.1016/0016-2361(83)90052-2
    [5]
    HATA K A, WATANABE Y, WADAK, WADA K, MITSUDO T A. Iron sulfate/sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J]. Fuel Process Technol, 1998, 56(3):291-304. doi: 10.1016/S0378-3820(98)00058-7
    [6]
    LI Q L, CHEN Z, ZHOU Q, LI L, WU S Y. Shengli lignite liquefaction under syngas and complex solvent[J]. J Fuel Chem Technol, 2016, 44:257-262. doi: 10.1016/S1872-5813(16)30014-7
    [7]
    冯婉璐, 吴诗勇, 尤全, 吴幼青, 郑化安, 闵小建.合成气气氛下含水量对锡林浩特煤液化性能的影响[J].华东理工大学学报(自然科学版), 2017, 43(2):156-161. http://d.old.wanfangdata.com.cn/Periodical/hdlgdxxb201702002

    FENG Wan-lu, WU Shi-yong, YOU Quan, WU You-qing, ZHENG Hua-an, MIN Xiao-jian. Effect of moisture amount on liquefaction of Xilinhaote coal under syngas[J]. J East China Univ Technol:Nat Sci Ed, 2017, 43(2):156-161. http://d.old.wanfangdata.com.cn/Periodical/hdlgdxxb201702002
    [8]
    YOU Q, WU S Y, WU Y Q, HUANG S, GAO J S, SHANG J X, MIN X J, ZHENG H A. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Process Technol, 2017, 156:54-161. doi: 10.1016/j.fuproc.2016.09.022
    [9]
    BIANCO A D, GIRARDI E, STROPPA F. Liquefaction of Sulcis subbituminous coal in a CO/water/base system[J]. Fuel, 1990, 69(2):240-244. doi: 10.1016/0016-2361(90)90180-X
    [10]
    王伟东, 邹春玉, 赵建涛.高温再热对依兰煤低温干馏产物及结焦行为的影响[J].煤化工, 2010, 38(2):22-26. doi: 10.3969/j.issn.1005-9598.2010.02.005

    WANG Wei-dong, ZOU Chun-yu, ZHAO Jian-tao. Impact of high-temperature and re-heating on low-temperature pyrolysis products and coking of Yilan coal[J]. Coal Chem Ind, 2010, 38(2):22-26. doi: 10.3969/j.issn.1005-9598.2010.02.005
    [11]
    朱培之, 高晋生.煤化学[M].上海:上海科学技术出版社, 1984.

    ZHU Pei-zhi, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.
    [12]
    CASSIDY P J, JACKSON W R, LARKINS F P, SAKUROVS R J, SUTTON J F. Hydrogenation of brown coal:8. The effect of added promoters and water on the liquefaction of Victorian brown coal using hydrogen, carbon monoxide and synthesis gas[J]. Fuel, 1986, 65(3):374-379. doi: 10.1016/0016-2361(86)90298-X
    [13]
    ZHAO Y Q, ZHANGM, CUI X T, DONG D L, WANG Q, ZHANG Y F. Converting lignite to caking coal via hydro-modification in a subcritical water-CO system[J]. Fuel, 2016, 167:1-8. doi: 10.1016/j.fuel.2015.11.028
    [14]
    PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The role of catalyst impregnation and solvent type in improving liquefaction efficiencies[J]. Coal Sci Technol, 1995, 24(6):1307-1310. http://www.sciencedirect.com/science/article/pii/S0167944906800431
    [15]
    JIN L J, HAN K M, WANG J Y, HU H Q. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Process Technol, 2014, 128:232-237. doi: 10.1016/j.fuproc.2014.07.033
    [16]
    KANEKO T, SUGITA S, TAMURA M, SHIMASAKI K, MAKINO E, SILALAHI L H. Highly active limonite catalysts for direct coal liquefaction[J]. Fuel, 2002, 81(11):1541-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf2e4a87b2e6e5067cf5b0c714c0480d
    [17]
    黄传荣, 吴诗勇, 聂立, 覃小刚, 吴幼青, 高晋生.铁基催化剂对胜利褐煤液化的影响[J].华东理工大学学报(自然科学版), 2014, 40(1):21-25. doi: 10.3969/j.issn.1006-3080.2014.01.004

    HUANG Chuan-rong, WU Shi-yong, NIE Li, QIN Xiao-gang, WU You-qing, GAO Jin-sheng. Effects of iron-based catalysts on liquefaction of Shengli lignite[J]. J East China Univ Technol:Nat Sci Ed, 2014, 40(1):21-25. doi: 10.3969/j.issn.1006-3080.2014.01.004
    [18]
    LI X, ZONG Z M, MA W W, CAO J P, MAYYAS M, WEI Z H, LI Y, YAN H L, WANG D, YANG R, WEI X Y. Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars[J]. Fuel Process Technol, 2015, 131:39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a78e7a75dfff1120198cebe66cec0
    [19]
    耿莉莉, 周岐雄, 马凤云, 冷帅.南台子煤催化加氢热解产物分布的初步研究[J].煤炭转化, 2012, 35(1):1-3. doi: 10.3969/j.issn.1004-4248.2012.01.001

    GENG Li-li, ZHOU Qi-xiong, MA Feng-yun, LENG Shuai. Study on the distributions of the products of Nantaizi coal during catalytic hydropyrolysis[J]. Coal Convers, 2012, 35(1):1-3. doi: 10.3969/j.issn.1004-4248.2012.01.001
    [20]
    WATANABE R, SAKAMOTO Y, YAMAMURO K, TAMURA S, KIKUCHI E, SEKINE Y. Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction[J]. Appl Catal A:Gen, 2013, 457(4):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caecc9e640d567d80b7f55e1b0882bc8
    [21]
    羊丽君, 潘铁英, 史新梅, 蔺华林, 张德祥, 高晋生. 1H NMR和GC-MS法分析表征煤液化油[J].分析测试学报, 2007, 26(4):488-491. doi: 10.3969/j.issn.1004-4957.2007.04.008

    YANG Li-jun, PAN Tie-ying, SHI Xin-mei, LIN Hua-lin, ZHANG De-xiang, GAO Jin-sheng. Characterization of coal liquefaction oil by 1H NMR and GC-MS[J]. J Instrum Anal, 2007, 26(4):488-491. doi: 10.3969/j.issn.1004-4957.2007.04.008
    [22]
    MA W W, ZONG Z M, LI X, WEI X Y. Catalytic hydrocracking of extraction residue from Huolinguole lignite over Fe3O4/SiO2/Mg2Si magnetic solid superbase catalyst[C]. Academic Forum for Graduate Students of "Mechanical Engineering and Thermal Engineering" in Shanghai, 2014.
    [23]
    吴秀章, 石玉林, 徐春明.煤炭直接液化油品加氢改质中试研究[J].石油学报(石油加工), 2009, 25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004

    WU Xiu-zhang, SHI Yu-lin, XU Chun-ming. Hydro-upgrading pilot test of direct coal liquefaction effluent[J]. Acta Pet Sin:Pet Process Sect, 2009, 25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004
    [24]
    SHAN X G, SHU G P, LI K J, ZHANG X W, WANG H X, CAO X P, JIANG H B, WEN H X. Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction[J]. Fuel, 2017, 194:291-296. doi: 10.1016/j.fuel.2017.01.034
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (205) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return