Volume 47 Issue 6
Jun.  2019
Turn off MathJax
Article Contents
ZHENG Jin-nan, AN Kang, WANG Jia-ming, LI Jing, LIU Yuan. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 697-708.
Citation: ZHENG Jin-nan, AN Kang, WANG Jia-ming, LI Jing, LIU Yuan. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 697-708.

Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst

Funds:

the National Natural Science Foundation of China 21872101

the National Natural Science Foundation of China 21576192

More Information
  • Corresponding author: LIU Yuan, E-mail: yuanliu@tju.edu.cn
  • Received Date: 2019-02-26
  • Rev Recd Date: 2019-03-27
  • Available Online: 2021-01-23
  • Publish Date: 2019-06-10
  • A new Co/La2O3-La4Ga2O9 catalyst was prepared by reducing LaCo1-xGaxO3 perovskite and used in the direct synthesis of ethanol from CO2 hydrogenation. The composite catalyst was characterized by XRD, XPS, TPD and TEM and its catalytic performance in CO2 hydrogenation was investigated in a micro fixed-bed reactor operated at 230-290℃, 3 MPa, gas hourly space velocity (GHSV) of 3000 mL/(gcat·h) and H2/CO2 molar ratio of 3.0. The results indicate that the Co/La-Ga-O composite oxide catalyst exhibits high selectivity to ethanol in CO2 hydrogenation. In comparison with the LaCoO3 catalyst, the incorporation of Ga dopant can inhibit the formation of CH4 and then promote the production of alcohols, especially ethanol. With a Co/Ga atomic ratio of 7:3, the Co/La-Ga-O composite oxide catalyst displays the best performance in CO2 hydrogenation, with a CO2 conversion of 9.8%, a selectivity of 74.7% to total alcohols and ethanol content of 88.1% (mass ratio) in the alcohols mixture. On the basis of the experimental results, it is speculated that the synergistic effect of surface Co0 and Coδ+ may contribute to the excellent performance of the Co/La2O3-La4Ga2O9 catalyst in CO2 hydrogenation to ethanol.
  • loading
  • [1]
    WANG D, BI Q, YIN G, ZHAO W, HUANG F, XIE X, JIANG M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun (Camb), 2016, 52(99): 14226-14229. doi: 10.1039/C6CC08161D
    [2]
    WANG W, WANG S, MA X, GONG J. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011, 40(7): 3703-3727. doi: 10.1039/c1cs15008a
    [3]
    WEI W, JINLONG G. Methanation of carbon dioxide: An overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10. doi: 10.1007/s11705-010-0528-3
    [4]
    AZIZ M A A, JALIL A A, TRIWAHYONO S, AHMAD A. CO2 methanation over heterogeneous catalysts: Recent progress and future prospects[J]. Green Chem, 2015, 17(5): 2647-2663. doi: 10.1039/C5GC00119F
    [5]
    POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci, 2016, 9(1): 62-73. doi: 10.1039/C5EE02657A
    [6]
    SUN K, LU W, QIU F, LIU S, XU X. Direct synthesis of DME over bifunctional catalyst: Surface properties and catalytic performance[J]. Appl Catal A: Gen, 2003, 252(2): 243-249. doi: 10.1016/S0926-860X(03)00466-6
    [7]
    WANG L, WANG L, ZHANG J, LIU X, WANG H, ZHANG W, YANG Q, MA J, DONG X, YOO S J, KIM J, MENG X, XIAO F. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angew Chem Int Ed, 2018, 57(21): 6104-6108. doi: 10.1002/anie.201800729
    [8]
    WANG D, BI Q, YIN G, ZHAO W, HUANG F, XIE X, JIANG M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun, 2016, 52(99): 14226-14229. doi: 10.1039/C6CC08161D
    [9]
    QIAN Q, CUI M, HE Z, WU C, ZHU Q, ZHANG Z, MA J, YANG G, ZHANG J, HAN B. Highly selective hydrogenation of CO2 into C2+ alcohols by homogeneous catalysis[J]. Chem Sci, 2015, 6(10): 5685-5689. doi: 10.1039/C5SC02000J
    [10]
    HE Z, QIAN Q, MA J, MENG Q, ZHOU H, SONG J, LIU Z, HAN B. Water-enhanced synthesis of higher alcohols from CO2 Hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed, 2016, 55(2): 737-741. doi: 10.1002/anie.201507585
    [11]
    OUYANG B, XIONG S, ZHANG Y, LIU B, LI J. The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 2017, 543: 189-195. doi: 10.1016/j.apcata.2017.06.031
    [12]
    PRIETO G. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: Thermodynamic and kinetic bounds and progress with heterogeneousand homogeneous catalysis[J]. ChemSusChem, 2017, 10(6): 1056-1070. doi: 10.1002/cssc.201601591
    [13]
    GNANAMANI M K, JACOBS G, KEOGH R A, SHAFER W D, SPARKS D E, HOPPS S D, THOMAS G A, DAVIS B H. Fischer-Tropsch synthesis: Effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide[J]. Appl Catal A: Gen, 2015, 499: 39-46. doi: 10.1016/j.apcata.2015.03.046
    [14]
    GNANAMANI M K, HAMDEH H H, JACOBS G, SHAFER W D, HOPPS S D, THOMAS G A, DAVIS B H. Hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared from mixed metal oxalates[J]. ChemCatChem, 2017, 9(7): 1303-1312. doi: 10.1002/cctc.201601337
    [15]
    GUO H, LI S, PENG F, ZHANG H, XIONG L, HUANG C, WANG C, CHEN X. Roles investigation of promoters in K/Cu-Zn catalyst and higher alcohols synthesis from CO2 hydrogenation over a novel two-stage bed catalyst combination system[J]. Catal Lett, 2015, 145(2): 620-630. doi: 10.1007/s10562-014-1446-7
    [16]
    GNANAMANI M K, JACOBS G, HAMDEH H H, SHAFER W D, LIU F, HOPPS S D, THOMAS G A, DAVIS B H. Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts[J]. ACS Catal, 2016, 6(2): 913-927. doi: 10.1021/acscatal.5b01346
    [17]
    POUR A N, HOSAINI E, IZADYAR M, HOUSAINDOKHT M R. Particle size effects in Fischer-Tropsch synthesis by Co catalyst supported on carbon nanotubes[J]. Chin J Catal, 2015, 36(8): 1372-1378. doi: 10.1016/S1872-2067(15)60840-3
    [18]
    ZHOU G, LIU H, XING Y, XU S, XIE H, XIONG K. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure[J]. J CO2 Util, 2018, 26: 221-229. doi: 10.1016/j.jcou.2018.04.023
    [19]
    LIU H, XU S, ZHOU G, XIONG K, JIAO Z, WANG S. CO2 hydrogenation to methane over Co/KIT-6 catalysts: Effect of Co content[J]. Fuel, 2018, 217: 570-576. doi: 10.1016/j.fuel.2017.12.112
    [20]
    LI Z, SI M, XIN L, LIU R, LIU R, LV J. Cobalt catalysts for Fischer-Tropsch synthesis: The effect of support, precipitant and pH value[J]. Chin J Chem Eng, 2018, 26(4): 747-752. doi: 10.1016/j.cjche.2017.11.001
    [21]
    JOHNSON G R, BELL A T. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2016, 338: 250-264. doi: 10.1016/j.jcat.2016.03.022
    [22]
    LEE M, JUNG W. Hydrothermal synthesis of LaCO3OH and Ln3+-doped LaCO3OH powders under ambient pressure and their transformation to La2O2CO3 and La2O3[J]. Bull Korean Chem Soc, 2013, 34(12): 3609-3614. doi: 10.5012/bkcs.2013.34.12.3609
    [23]
    CHAKRABARTI D, DE KLERK A, PRASAD V, GNANAMANI M K, SHAFER W D, JACOBS G, SPARKS D E, DAVIS B H. Conversion of CO2 over a Co-based Fischer-Tropsch catalyst[J]. Ind Eng Chem Res, 2015, 54(4): 1189-1196. doi: 10.1021/ie503496m
    [24]
    GAO P, LI F, ZHAN H, ZHAO N, XIAO F, WEI W, ZHONG L, WANG H, SUN Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298: 51-60. doi: 10.1016/j.jcat.2012.10.030
    [25]
    DU H, ZHU H, ZHAO Z, DONG W, LUO W, LU W, JIANG M, LIU T, DING Y. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Appl Catal A: Gen, 2016, 523: 263-271. doi: 10.1016/j.apcata.2016.06.022
    [26]
    BEDEL L, ROGER A C, ESTOURNES C, KIENNEMANN A. Co0 from partial reduction of La(Co, Fe)O3 perovskites for Fischer-Tropsch synthesis[J]. Catal Today, 2003, 85(2/4): 207-218. http://www.sciencedirect.com/science/article/pii/S0920586103003882
    [27]
    TONIOLO F S, MAGALHÃES R N S H, PEREZ C A C, SCHMAL M. Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane[J]. Appl Catal B: Environ, 2012, 117/118: 156-166. doi: 10.1016/j.apcatb.2012.01.009
    [28]
    ONRUBIA J A, PEREDA-AYO B, DE-LA-TORRE U, GONZÁLEZ-VELASCO J R. Key factors in Sr-doped LaBO3 (B=Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification[J]. Appl Catal B: Environ, 2017, 213: 198-210. doi: 10.1016/j.apcatb.2017.04.068
    [29]
    NIU T, LIU G L, CHEN Y, YANG J, WU J, CAO Y, LIU Y. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas[J]. Appl Surf Sci, 2016, 364: 388-399. doi: 10.1016/j.apsusc.2015.12.164
    [30]
    GUO S, LI S, ZHONG H, GONG D, WANG J, KANG N, ZHANG L, LIU G, LIU Y. Mixed oxides confined and tailored cobalt nanocatalyst for direct ethanol synthesis from syngas: A catalyst designing by using Perovskite-Type oxide as the precursor[J]. Ind Eng Chem Res, 2018, 57(6): 2404-2415. doi: 10.1021/acs.iecr.7b04336
    [31]
    PODILA S, DRISS H, ZAMAN S F, ALHAMED Y A, ALZAHRANI A A, DAOUS M A, PETROV L A. Hydrogen generation by ammonia decomposition using Co/MgO-La2O3 catalyst: Influence of support calcination atmosphere[J]. J Mol Catal A: Chem, 2016, 414: 130-139. doi: 10.1016/j.molcata.2016.01.012
    [32]
    DE LA PEÑA O SHEA V A, GONZÁLEZ S, ILLAS F, FIERRO J L G. Evidence for spontaneous CO2 activation on cobalt surfaces[J]. Chem Phys Lett, 2008, 454(4/6): 262-268. http://www.sciencedirect.com/science/article/pii/S0009261408001759
    [33]
    YAZDANI P, WANG B, GAO F, KAWI S, BORGNA A. Role of the strong lewis base sites on glucose hydrogenolysis[J]. ChemCatChem, 2018, 10(17): 3845-3853. doi: 10.1002/cctc.201800427
    [34]
    PODILA S, DRISS H, ZAMAN S F, ALI A M, AL-ZAHRANI A A, DAOUS M A, PETROV L A. Effect of preparation methods on the catalyst performance of Co/Mg La mixed oxide catalyst for COx-free hydrogen production by ammonia decomposition[J]. Int J Hydrogen Energy, 2017, 42(38): 24213-24221. doi: 10.1016/j.ijhydene.2017.07.112
    [35]
    ZHANG Y, HAN K, CHENG T, FANG Z. Synthesis, characterization, and photoluminescence property of LaCO3OH microspheres[J]. Inorg Chem, 2007, 46(11): 4713-4717. doi: 10.1021/ic0701458
    [36]
    JENA H, GOVINDAN KUTTY K V, KUTTY T R N. Novel wet chemical synthesis and ionic transport properties of LaGaO3 and selected doped compositions at elevated temperatures[J]. Mater Sci Eng B, 2004, 113(1): 30-41. doi: 10.1016/j.mseb.2004.06.017
    [37]
    JAIN R, GOPINATH C S. New strategy toward a dual functional nanocatalyst at ambient conditions: Influence of the Pd-Co interface in the catalytic activity of Pd@Co core-shell nanoparticles[J]. ACS Appl Mater Interfaces, 2018, 10(48): 41268-41278. doi: 10.1021/acsami.8b12940
    [38]
    BIESINGER M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Appl Surf Sci, 2011, 257(7): 2717-2730. doi: 10.1016/j.apsusc.2010.10.051
    [39]
    LIU L F, KANG J F, WANG Y, TANG H, KONG L G, SUN L, ZHANG X, HAN R Q. The influence of hydrogen annealing on magnetism of Co-doped TiO2 films prepared by sol-gel method[J]. J Magn Magn Mater, 2007, 308(1): 85-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa40746153718f5fd0c5864a7ac3240
    [40]
    ZHAO L, HAN T, WANG H, ZHANG L, LIU Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B: Environ, 2016, 187: 19-29. doi: 10.1016/j.apcatb.2016.01.007
    [41]
    SAN-JOSÉ-ALONSO D, JUAN-JUAN J, ILLÁN-GÍMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A: Gen, 2009, 371(1/2): 54-59. http://www.sciencedirect.com/science/article/pii/S0926860X09006486
    [42]
    LIU F, ZHAO L, WANG H, BAI X, LIU Y. Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol[J]. Int J Hydrogen Energy, 2014, 39(20): 10454-10466. doi: 10.1016/j.ijhydene.2014.05.036
    [43]
    YANG Q, CAO A, KANG N, AN K, LIU Z, LIU Y. A new catalyst of Co/La2O3-doped La4Ga2O9 for direct ethanol synthesis from syngas[J]. Fuel Process Technol, 2018, 179: 42-52. doi: 10.1016/j.fuproc.2018.06.011
    [44]
    PEI Y, LIU J, ZHAO Y, DING Y, LIU T, DONG W, ZHU H, SU H, YAN L, LI J, LI W. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catal, 2015, 5(6): 3620-3624. doi: 10.1021/acscatal.5b00791
    [45]
    R W DORNER D R H F, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels, 2009, 23: 4190-4195. doi: 10.1021/ef900275m
    [46]
    JIAO G, DING Y, ZHU H, LI X, LI J, LIN R, DONG W, GONG L, PEI Y, LU Y. Effect of La2O3 doping on syntheses of C1-C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Appl Catal A: Gen, 2009, 364(1/2): 137-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=646f4f80b9f060d1ffc633530adcb340
    [47]
    SMITH M L, KUMAR N, SPIVEY J J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS[J]. J Phys Chem C, 2012, 116(14): 7931-7939. doi: 10.1021/jp301197s
    [48]
    ZHANG Y, JACOBS G, SPARKS D E, DRY M E, DAVIS B H. CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts[J]. Catal Today, 2002, 71(3/4): 411-418. http://www.sciencedirect.com/science/article/pii/S0920586101004680
    [49]
    TAKANABE K, NAGAOKA K, NARIAI K, AIKA K. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[J]. J Catal, 2005, 232(2): 268-275. doi: 10.1016/j.jcat.2005.03.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (109) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return