Volume 47 Issue 2
Feb.  2019
Turn off MathJax
Article Contents
ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 138-143.
Citation: ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 138-143.

Reaction mechanism of arsenic and nitrous oxides during coal combustion

Funds:

the National Key R & D Program of China 2016YFB0600701

the Fundamental Research Funds for the Central Universities 2017XS122

More Information
  • Corresponding author: ZOU Chan, E-mail: hbdlzch@163.com
  • Received Date: 2018-09-11
  • Rev Recd Date: 2018-11-29
  • Available Online: 2021-01-23
  • Publish Date: 2019-02-10
  • The reaction mechanism between arsenic and nitrous oxides (N2O, NO2 and NO) was investigated by applying density functional theory in quantum chemistry. The geometries of reactants, intermediates, transition states and products for each reaction were optimized. Frequency analysis was applied to verify those geometries, and the authenticity of transition states were confirmed by intrinsic reaction coordinate analysis (IRC). The stationary points of the single point energy were calculated at B2PLYP level, and the kinetic analysis was conducted to further reveal the reaction mechanism. Results show that the energy barrier of the reactions between arsenic and nitrous oxides (N2O, NO2 and NO) is 78.45, 2.58 and 155.85 kJ/mol, respectively. The reaction rate increases in the range of 298-1800 K and keeps at a high level (>1012 cm3/(mol·s)), although the temperature has a tiny impact on the reaction of arsenic with NO2 as a result of a low energy barrier, indicating that the reaction is easy to take place. Furthermore, it is found that the rate of reaction between arsenic and N2O or NO has a rapid increase at 298-900 K, and then the rate increment becomes less with the further increase of temperature.
  • loading
  • [1]
    李文秀, 王宝凤, 任杰, 张锴, 杨凤玲, 程芳琴.贫煤O2/CO2气氛下燃烧时内在矿物质对SO2和NOx排放特性的影响[J].燃料化学学报, 2017, 45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007

    LI Wen-xiu, WANG Bao-feng, REN Jie, ZHANG Kai, YANG Feng-ling, CHENG Fang-qin. Effect of mineral matter on emissions of SO2 and NOx during combustion of lean coal in O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2017, 45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007
    [2]
    WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust, 2018, 68:1-28. doi: 10.1016/j.pecs.2018.04.001
    [3]
    LIU H, PAN W, WANG C, ZHANG Y. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600-1500℃[J]. Energy Fuels, 2016, 30(8):6790-6798. doi: 10.1021/acs.energyfuels.6b00816
    [4]
    LIU H, WANG C, ZOU C, ZHANG Y, WANG J. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017, 203:152-161. doi: 10.1016/j.fuel.2017.04.101
    [5]
    TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013, 107:315-322. doi: 10.1016/j.fuel.2013.01.009
    [6]
    ZHAO Y, ZHANG J, HUANG W, WANG Z, LI Y, SONG D, ZHAO F, ZHENG C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008, 49(4):615-624. doi: 10.1016/j.enconman.2007.07.044
    [7]
    ZIELINSKI R A, FOSTER A L, MEEKER G P, BROWNFIELD I K. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007, 86(4):560-572. doi: 10.1016/j.fuel.2006.07.033
    [8]
    CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009, 88:539-546. doi: 10.1016/j.fuel.2008.09.028
    [9]
    刘迎晖, 郑楚光, 游小清, 郭欣.燃煤过程中易挥发有毒痕量元素的相互作用[J].燃烧科学与技术, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001, 7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007
    [10]
    URBAN D R, WILCOX J. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases[J]. J Phys Chem A, 2006, 110(17):5847-5852. doi: 10.1021/jp055564+
    [11]
    MONAHAN-PENDERGAST M, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008, 42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
    [12]
    URBAN D R, WILCOX J. Theoretical study of the kinetics of the reactions Se + O2 → Se + O and As + HCl → AsCl + H[J]. J Phys Chem A, 2006, 110(28):8797-8801. doi: 10.1021/jp0628986
    [13]
    雷鸣, 黄星智, 王春波.典型煤种O2/CO2/H2O气氛下中高温燃烧时NO的生成特性[J].动力工程学报, 2017, 37(6):432-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201706002

    LEI Ming, HUANG Xing-zhi, WANG Chun-bo. NO emission characteristics of typical coals under O2/CO2/H2O atmosphere at intermediate and high temperatures[J]. J Chin Soc Power Eng, 2017, 37(6):432-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlgc201706002
    [14]
    王春波, 岳爽, 许旭斌, 李一鹏. O2/CO2气氛下煤焦恒温燃烧NOx释放特性[J].煤炭学报, 2018, 43(1):257-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201801031

    WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx release of char in constant temperature combustion under O2/CO2 atmosphere[J]. J China Coal Soc, 2018, 43(1):257-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201801031
    [15]
    肖海平, 周俊虎, 刘建忠, 孙保民, 叶力平.含硫物相对NO还原过程的影响[J].燃料化学学报, 2008, 36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024

    XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong, SUN Bao-ming, YE Li-ping. Effect mechanism of existence pattern of sulphur on reduction of NO[J]. J Fuel Chem Technol, 2008, 36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024
    [16]
    刘晶, 郑楚光, 邱建荣.燃烧烟气汞反应的量子化学计算方法研究[J].工程热物理学报, 2007, 28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050

    LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Study on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007, 28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050
    [17]
    AWUAHA J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAHAD B, CATLOW C R A, DE LEEUW N H. A density functional theory study of arsenic immobilization by the Al(iii)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016, 18(16):11297-11305. doi: 10.1039/C6CP00190D
    [18]
    FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09, Revision D.01[J]. Gaussian, Inc., Wallingford, CT, 2009.
    [19]
    ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015, 82(C):312-321.
    [20]
    SCHRÖDER B, SEBALD P, STEIN C, WESER O, BOTSCHWINA P. Challenging high-level ab initio rovibrational spectroscopy:The nitrous oxide molecule[J]. Z Phys Chem, 2015, 229(10/12):1663-1690.
    [21]
    BORISENKO K B, KOLONITS M, ROZSONDAI B, HARGITTAI I. Electron diffraction study of the nitrogen dioxide molecular structure at 294, 480, and 691 K[J]. J Mol Struct, 1997, 413-414:121-131. doi: 10.1016/S0022-2860(96)09588-9
    [22]
    MARSDEN C J, SMITH B J. AB initio force constants:A cautionary tale concerning nitrogen oxides[J]. J Mol Struct:Theochem, 1989, 187:337-357. doi: 10.1016/0166-1280(89)85174-7
    [23]
    EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of OH with the H2O laser:A galactic maser pump?[J]. Phys Rev Lett, 1970, 25(4):199-202. doi: 10.1103/PhysRevLett.25.199
    [24]
    MIZUSHIMA M. Molecular parameters of OH free radical[J]. Phys Rev A, 1972, 5(1):143-157. doi: 10.1103/PhysRevA.5.143
    [25]
    王鹏乾, 王长安, 杜勇博, 张龙飞, 车得福. O2/CO2燃烧条件下NO2还原特性的实验研究[J].西安交通大学学报, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003

    WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental investigation on the NO2 reduction property under O2/CO2 combustion condition[J]. J Xi'an Jiaotong Univ, 2017, 51(5):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xajtdxxb201705003
    [26]
    JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017, 141:1538-1546. doi: 10.1016/j.energy.2017.11.115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (256) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return