Volume 46 Issue 4
Apr.  2018
Turn off MathJax
Article Contents
LI Zuo-peng, SHANG Jian-peng, SU Cai-na, ZHANG San-bing, WU Mei-xia, GUO Yong. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 473-478.
Citation: LI Zuo-peng, SHANG Jian-peng, SU Cai-na, ZHANG San-bing, WU Mei-xia, GUO Yong. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(4): 473-478.

Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions

Funds:

The project was supported by National Natural Science Foundation of China 21073113

Natural Science Foundation of Shanxi 201701D121016

Science, Technology Innovation Project of Shanxi Province University 2015178

Science, Technology Innovation Project of Shanxi Province University 2016172

Natural Science Foundortion of Datong 2015108

More Information
  • Corresponding author: WU Mei-xia, Tel/Fax: +86-352-7158185, E-mail: wmxiccas@iccas.ac.cn; GUO Yong, E-mail:ybsy_guo@163.com
  • Received Date: 2017-12-13
  • Rev Recd Date: 2018-02-02
  • Available Online: 2021-01-23
  • Publish Date: 2018-04-10
  • Amorphous alloy NiP and its carbon composite catalysts NiP/C and NiP/reduced graphene oxide (RGO) were successfully one-pot synthesized using NaH2PO2 and NiSO4 as phosphorus and nickel source, respectively. The electrocatalysts were characterized with transmission electron microscope (TEM), X-ray diffraction spectrometer (XRD), inductively coupled plasma analysis (ICP) and thermogravimetric analysis (TG), respectively. The hydrogen evolution reactions (HER) performance of the electrocatalysts was evaluated with a linear sweep voltammetry method in both acidic and alkaline solution. Among them, NiP/RGO elctrocatalyst exhibited 89.0 mV onset overpotential and Tafel slope 135.1 mV/decade in acidic solution, as well as 116.1 mV onset overpotential and Tafel slope 122.4 mV/decade in alkaline solution with excellent long-term stability. Results indicated that the NiP/RGO was a very active catalyst.
  • loading
  • [1]
    DUNN S. Hydrogen futures:Toward a sustainable energy system[J]. Int J Hydrogen Energy, 2002, 27(3):235-264. doi: 10.1016/S0360-3199(01)00131-8
    [2]
    NEJAT V T, SUEMER S. 21st Century's energy:Hydrogen energy system[J]. Energy Convers Manage, 2008, 49(7):1820-1831. doi: 10.1016/j.enconman.2007.08.015
    [3]
    SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005, 78(5):647-660. doi: 10.1016/j.solener.2005.01.002
    [4]
    EFTEKHARI A. Electrocatalysts for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2017, 42(16):11053-11077. doi: 10.1016/j.ijhydene.2017.02.125
    [5]
    WANG J, XU F, JIN H, CHEN Y, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction:Fundamentals to applications[J]. Adv Mater, 2017, 29(14):1605838. doi: 10.1002/adma.v29.14
    [6]
    ZHENG Y, JIAO Y, ZHU Y, LI L, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014, 5(4):3783. https://eprints.qut.edu.au/70605/
    [7]
    POPCZUN E J, MCKONE J R, READ C G, BIACCHI A J, WILTROUT A M, LEWIS N S, SCHAAK R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2013, 135(25):9267-9270. doi: 10.1021/ja403440e
    [8]
    XIAO P, CHEN W, WANG X. A review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Adv Energy Mater, 2015, 5(24):1500985. doi: 10.1002/aenm.201500985
    [9]
    SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials:Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev, 2016, 25(6):1529-1541. https://www.ncbi.nlm.nih.gov/pubmed/26806563
    [10]
    ANDARAARACHCHI H P, THOMPSON M J, WHITE M A, FAN H, VELA J. Phase-programmed nanofabrication:Effect of organophosphite precursor reactivity on the evolution of nickel and nickel phosphide nanocrystals[J]. Chem Mater, 2015, 27(23):8021-8031. doi: 10.1021/acs.chemmater.5b03506
    [11]
    LI D, SENEVIRATHNE K, AQUILINA L, BROCK S L. Effect of synthetic levers on nickel phosphide nanoparticle formation:Ni5P4 and NiP2[J]. Inorg Chem, 2015, 54(16):7968-7975. doi: 10.1021/acs.inorgchem.5b01125
    [12]
    PAN Y, LIU Y, ZHAO J, YANG K, LIANG J, LIU D, HU W, LIU D, LIU Y, LIU C. Monodispersed nickel phosphide nanocrystals with different phases:Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. J Mater Chem A, 2015, 3(4):1656-1665. doi: 10.1039/C4TA04867A
    [13]
    PAN Y, HU W, LIU D, LIU Y, LIU C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A, 2015, 3(24):13087-13094. doi: 10.1039/C5TA02128F
    [14]
    PAN Y, LIU Y, LIU C. Nanostructured nickel phosphide supported on carbon nanospheres:Synthesis and application as an efficient electrocatalyst for hydrogen evolution[J]. J Power Sources, 2015, 285:169-177. doi: 10.1016/j.jpowsour.2015.03.097
    [15]
    LIN Y, ZHANG J, PAN Y, LIU Y. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution[J]. Appl Surf Sci, 2017, 422:828-837. doi: 10.1016/j.apsusc.2017.06.102
    [16]
    PAN Y, YANG N, CHEN Y, LIN Y, LI Y, LIU Y, LIU C. Nickel phosphide nanoparticles nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. J Power Sources, 2015, 297:45-52. doi: 10.1016/j.jpowsour.2015.07.077
    [17]
    WANG P, PU Z, LI Y, WU L, TU Z, JIANG M, KOU Z, SAANA AMⅡNU I, MU S. Iron-doped nickel phosphide nanosheet arrays:an efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl Mater Interfaces, 2017, 9(31):26001-26007. doi: 10.1021/acsami.7b06305
    [18]
    OYAMA S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides[J]. J Catal, 2003, 216(1):343-352. https://www.sciencedirect.com/science/article/pii/S0021951702000696
    [19]
    SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J]. J Catal, 2003, 215(2):208-219. doi: 10.1016/S0021-9517(03)00018-6
    [20]
    OYAMA S T, LEE Y. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4, 6-DMDBT[J]. J Catal, 2008, 258(2):393-400. doi: 10.1016/j.jcat.2008.06.023
    [21]
    MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011, 4(10):3878-3888. doi: 10.1039/c1ee01970h
    [22]
    PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the fatalyst and the promoter in Co-Mo hydrodesulfurization catalysts[J]. Catal Rev, 1989, 31(1/2):1-41. https://www.narcis.nl/publication/RecordID/oai:library.tue.nl:620424
    [23]
    MA Q, SONG J, JIN C, LI Z, LIU J, MENG S, ZHAO J, GUO Y. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid[J]. Carbon, 2013, 54(8):36-41. https://www.sciencedirect.com/science/article/pii/S0008622312008809
    [24]
    WAN L, ZHANG J, CHEN Y, ZHONG C, HU W, DENG Y. Nickel phosphide nanosphere:A high-performance and cost-effective catalyst for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2016, 41(45):20515-20522. doi: 10.1016/j.ijhydene.2016.08.146
    [25]
    YANG L, WU X, ZHU X, HE C, MENG GAN Z, CHU P K. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction[J]. Appl Surf Sci, 2015, 341:149-156. doi: 10.1016/j.apsusc.2015.03.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (66) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return