Volume 46 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1113-1120.
Citation: YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1113-1120.

Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface

Funds:

the National Natural Science Foundation of China 21776304

the National Natural Science Foundation of China 21473229

the National Natural Science Foundation of China 91545121

the Shanxi Province Science Foundation for Youth 201601D021048

More Information
  • Corresponding author: SHEN Bao-jian, E-mail: baojian@cup.edu.cn
  • Received Date: 2018-04-17
  • Rev Recd Date: 2018-07-27
  • Available Online: 2021-01-23
  • Publish Date: 2018-09-10
  • Density functional theory calculations were used to investigate CO2 adsorption behaviors on Fetet1-and Feoct2-terminated surface of Fe3O4 (111). The results indicated that on the Fetet1-terminated surface, the linear CO2 is favored at 1/5 monolayer (ML), whereas the bent CO2 bonded to surface O, i.e. carbonate structure, becomes possible at higher coverage. On the Feoct2-terminated surface, the bent CO2 is favored; both carbonate and carboxylate structure are formed at both 1/6 and 1/3 ML. Meanwhile, the Fetet1-terminated Fe3O4(111) surface has weak coverage effects, whereas the Feoct2-terminated Fe3O4(111) surface has strong coverage effects; the Feoct2-terminated surface is thermodynamically more favorable than the Fetet1-terminated surface for CO2 adsorption.
  • loading
  • [1]
    GEUS W J. Preparation and properties of iron oxide and metallic iron catalysts[J]. Appl Catal A:Gen, 1986, 25(1/2):313-333. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0230036199
    [2]
    RAO K R, HUGGINS F E, MAHAJAN V, HUFFMAN G P. Mossbauer spectroscopy study of iron-based catalysts used in Fischer-Tropsch synthesis[J]. Top Catal, 1995, 2(1/4):71-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026298908
    [3]
    ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser raman spectroscopy[J]. J Catal, 1985, 95(1):325-332. doi: 10.1016/0021-9517(85)90038-7
    [4]
    RETHWISCH D G, DUMESIC J A. Adsorptive and catalytic properties of supported metal oxides Ⅲ. Water-gas shift over supported iron and zinc oxides[J]. J Catal, 1986, 101(1):35-42. doi: 10.1016/0021-9517(86)90226-5
    [5]
    HUANG C S, XU L G, DAVIS B H. Fishcher-Tropsch synthesis:Impact of pretreatment of ultrafine iron oxide upon catalyst structure and selectivity[J]. Fuel Sci Technol Int, 1993, 11(5/6):639-664. https://www.researchgate.net/publication/232855235_Fischer-tropsch_synthesis_impact_of_pretreatment_of_ultrafine_iron_oxide_upon_catalyst_structure_and_selectivity
    [6]
    NEWSOME D S. The water-gas shift reaction[J]. Catal Rev Sci Eng, 1980, 21(2):275-318. doi: 10.1080/03602458008067535
    [7]
    ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite I. Preparation, characterization of magnetite, and its activity of decomposing carbon dioxide[J]. Mater Chem Phys, 2000, 62(1):44-51. doi: 10.1016/S0254-0584(99)00169-8
    [8]
    ZHANG C L, LI S, WANG L J, WU T H, PENG S Y. Studies on the decomposition of carbon dioxide into carbon with oxygen-deficient magnetite Ⅱ. The effects of properties of magnetite on activity of decomposition CO2 and mechanism of the reaction[J]. Mater Chem Phys, 2000, 62(1):52-61. doi: 10.1016/S0254-0584(99)00168-6
    [9]
    ZHU L, YAO K L, LIU Z L. First-principles study of the polar(111) surface of Fe3O4[J]. Phys Rev B, 2006, 74(3):035409. doi: 10.1103/PhysRevB.74.035409
    [10]
    LI Y L, YAO K L, LIU Z L. Structure, stability and magnetic properties of the Fe3O4(110) surface:Density functional theory study[J]. Surf Sci, 2007, 601(3):876-882. doi: 10.1016/j.susc.2006.10.037
    [11]
    PENTCHCHEVA R, WENDLER F, MEYERHEIM H L, MORITZ W, JEDRECY N, SCHEFFLER M. Jahn-Teller stabilization of a "Polar" metal oxide surface:Fe3O4(001)[J]. Phys Rev Lett, 2005, 94(12):126101. doi: 10.1103/PhysRevLett.94.126101
    [12]
    HUANG D M, CAO D B, LI Y W, JIAO H J. Density function theory study of CO adsorption on Fe3O4(111) surface[J]. J Phys Chem B, 2006, 110(28):13920-13925. doi: 10.1021/jp0568273
    [13]
    YANG T, WEN X D, HUO C F, LI Y W, WANG J G, JIAO H J. Carburization of the Fe3O4(111) Surface[J]. J Phys Chem C, 2007, 112(16):6372-6379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ021080213
    [14]
    PAYNE M C, ALLAN D C, ARIAS T A, JOANNOPOULOS J D. Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64(4):1045-1097. doi: 10.1103/RevModPhys.64.1045
    [15]
    MILMAN V, WINKLER B, WHITE J A, PICKARD C J, PAYNE M C, AKHMATASKAYA E V, NOBES R H. Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study[J]. Int J Quantum Chem, 2000, 77(5):895-910. doi: 10.1002/(ISSN)1097-461X
    [16]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17]
    DUDAREV S L, BOTTON G A, SAVRASOV S Y, HUMPHREYS C J, SUTTON A P. Electron-energy-loss spectra and the structural stability of nickel oxide:An LSDA+U study[J]. Phys Rev B, 1998, 57(3):1505-1509. doi: 10.1103/PhysRevB.57.1505
    [18]
    MENG Y, LIU X W, HUO C F, GUO W P, CAO D B, PENG Q, ALBERT D, XAVIER G, YANG Y, WANG J G, JIAO H J, LI Y W, WEN X D. When density functional approximations meet iron oxides[J]. J Chem Theory Comput, 2016, 12(10):5132-5144. doi: 10.1021/acs.jctc.6b00640
    [19]
    VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11):7892-7895. doi: 10.1103/PhysRevB.41.7892
    [20]
    MONKHORST H J, PACK J D. Special points for Brillonin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188
    [21]
    LOUIE S G, FROYEN S, COHEN M L. Nonlinear ionic pseudopotentials in spin-density-functional calculations[J]. Phys Rev B, 1982, 26(4):1738-1742. doi: 10.1103/PhysRevB.26.1738
    [22]
    NAYAK S K, NOOIJEN M, BERNASEK S L. Electronic structure study of CO adsorption on the Fe(001) surface[J]. J Phys Chem B, 2001, 105(1):164-172. doi: 10.1021/jp002314e
    [23]
    CHENG H S, REISER D B, DEAN S W JR, BAUMERT K. Structure and energetics of iron pentacarbonyl formation at an Fe(100) surface[J]. J Phys Chem B, 2001, 105(50):12547-12552. doi: 10.1021/jp0155112
    [24]
    GE Q, JENKINS S J, KING D A. Localisation of adsorbate-induced demagnetisation:CO chemisorbed on Ni{110}[J]. Chem Phys Lett, 2000, 327(3/4):125-130. https://www.researchgate.net/publication/223123164_Localisation_of_adsorbate-induced_demagnetisation_CO_chemisorbed_on_Ni110
    [25]
    WYCKOFF R W. Crystal Structures (Vol. 2)[M]. 2nd edition, 1982, p5.
    [26]
    SPENCER N D, SCHOONMAKER R C, SOMORJAI G A. Iron single crystals as ammonia synthesis catalysts:Effect of surface structure on catalyst activity[J]. J Catal, 1982, 74(1):129-135. doi: 10.1016/0021-9517(82)90016-1
    [27]
    TOPSOE H, DUMESIC J A, BOUDART M. Alumina as a textural promoter of iron synthetic ammonia catalysts[J]. J Catal, 1973, 28(3):477-488. doi: 10.1016/0021-9517(73)90141-3
    [28]
    LEMIRE C, MEYER R, HENRICH V E, SHAIKHUTDINOV S K, FREUND H J. The surface structure of Fe3O4(111) films as studied by CO adsorption[J]. Surf Sci, 2004, 572(1):103-114. doi: 10.1016/j.susc.2004.08.033
    [29]
    CONDON N G, MURRAY P W, LEIBSLE F M, THORNTON G, LENNIE A R, VAUGHAN D J. Fe3O4(111) termination of α-Fe2O3(0001)[J]. Surf Sci, 1994, 310(1/3):L609-L613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233621150
    [30]
    WEISS W, RANKE W. Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers[J]. Prog Surf Sci, 2002, 70(1):1-151. http://cn.bing.com/academic/profile?id=1d3e7333c05bbca4e5a82f83e6a3b96e&encoded=0&v=paper_preview&mkt=zh-cn
    [31]
    SHAIKHUTDINOV S K, RITTER M, WANG X G, OVER H, WEISS W. Defect structures on epitaxial Fe3O4(111) films[J]. Phys Rev B, 1999, 60(15/16):11062-11069. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ029000372
    [32]
    RITTER M, WEISS W. Fe3O4(111) surface structure determined by LEED crystallography[J]. Surf Sci, 1999, 432(1/2):81-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ025546280
    [33]
    WANG S G, CAO D B, LI Y W, WANG J G, JIAO H J. Chemisorption of CO2 on nickel surfaces[J]. J Phys Chem B, 2005, 109(40):18956-18963. doi: 10.1021/jp052355g
    [34]
    FREUND H J, MESSMER R P. On the bonding and reactivity of CO2 on metal surfaces[J]. Surf Sci, 1986, 172(1):1-30. doi: 10.1016/0039-6028(86)90580-7
    [35]
    GOPEL W, ROCKER G. Localized and delocalized charge transfer during adsorption on semiconductors:Experiments and cluster calculations on the prototype surface ZnO(1010)[J]. J Vac Sci Technol, 1982, 21(2):389-397. doi: 10.1116/1.571788
    [36]
    GOPEL W. Chemisorption and charge transfer at ionic semiconductor surfaces:Implication in desiging gas sensors[J]. Prog Surf Sci, 1985, 20(1):9-103. doi: 10.1016/0079-6816(85)90004-8
    [37]
    RUNGE F, GOPEL W. Comparative study on the reactivity of polycrystalline and single crystal ZnO surfaces:O2 and CO2 interaction[J]. Z Phys Chem, 1980, 123(2):173-192. doi: 10.1524/zpch.1980.123.2.173
    [38]
    HOTAN W, GOPEL W, HAUL R. Interaction of CO2 and CO with nonpolar Zinc oxide surfaces[J]. Surf Sci, 1979, 83(1):162-180. doi: 10.1016/0039-6028(79)90486-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (98) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return