Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
WANG Rui-yi, LIU Huan, ZHENG Zhan-feng. Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1486-1494.
Citation: WANG Rui-yi, LIU Huan, ZHENG Zhan-feng. Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1486-1494.

Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts

Funds:

the the Shanxi Science and Technology Department 2015081044

More Information
  • Corresponding author: ZHENG Zhan-feng, Tel: 0351-404060, E-mail: zfzheng@sxicc.ac.cn
  • Received Date: 2019-10-16
  • Rev Recd Date: 2019-11-07
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • Al2O3 supported Pt and Pd nanoparticle catalysts were prepared by impregnation-reduction method, and employed in the photocatalytic aqueous-phase reforming of ethylene glycol. Light illumination can decrease the reaction activation energy remarkably. Pt/Al2O3 exhibits much higher H2 turnover frequency (TOF) and lower CO selectivity than Pd/Al2O3 catalyst. Their morphology and structure were characterized by XRD, TEM, UV-vis techniques. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicates light can promote the cleavage of O-H bonds of ethylene glycol molecule. DFT calculation suggests the lower CO selectivity over Pt/Al2O3 catalyst can be attributed to the low energy barriers of reaction in the step of CO+O→CO2.
  • loading
  • [1]
    TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686):972-974. doi: 10.1126/science.1103197
    [2]
    KUEHNEL M F, REISNER E. Solar hydrogen generation from lignocellulose[J]. Angew Chem Int Ed, 2018, 57(13):3290-3296. doi: 10.1002/anie.201710133
    [3]
    LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001, 26(9):923-933. doi: 10.1016/S0360-3199(01)00034-9
    [4]
    CORTRIGHT R D, DAVDA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418(6901):964-967. doi: 10.1038/nature01009
    [5]
    刘洋, 朱善辉, 李俊汾, 秦张峰, 樊卫斌, 王建国.纳米片层二硫化钼负载PtCo双金属催化甲醇水相重整制氢[J].燃料化学学报, 2019, 47(7):799-805. doi: 10.3969/j.issn.0253-2409.2019.07.004

    LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous phase reforming of methanol to hydrogen[J]. J Fuel Chem Technol, 2019, 47(7):799-805. doi: 10.3969/j.issn.0253-2409.2019.07.004
    [6]
    张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯.甲醇水蒸气重整制氢反应条件的优化[J].燃料化学学报, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019

    ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous phase reforming of methanol to hydrogen[J]. J Fuel Chem Technol, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019
    [7]
    VADYA P D, LOPZE-SANCHEZ J A. Review of hydrogen production by catalytic aqueous-phase reforming[J]. Chemistryselect, 2017, 2(22):6563-6576. doi: 10.1002/slct.201700905
    [8]
    CORONADO I, STEKROVA M, RENⅡKAINEN M, SIMELL P, LEFFERTS L, LEHTONEN J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions[J]. Int J Hydrogen Energy, 2016, 41(26):11003-11032. doi: 10.1016/j.ijhydene.2016.05.032
    [9]
    XIONG H, DELARIVA A, WANG Y, DATYE A. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts[J]. Catal Sci Technol, 2015, 5(1):254-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=224e52a932a4b1e3f0902d6f80d8b846
    [10]
    CORONADO I, STEKROVA M, MORENO L G, REINIKANINEN M, SIMELL P, KARINEN R, LEHTONEN J. Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production[J]. Biomass Bioenergy, 2017, 106:29-37. doi: 10.1016/j.biombioe.2017.08.018
    [11]
    HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catal Today, 2006, 111(1):119-132. doi: 10.1016-j.cattod.2005.10.010/
    [12]
    SARINA S, ZHU H, XIAO Q, JAATINEN E, JIA J, HUANG Y, ZHENG Z, WU H. Viable photocatalysts under solar-spectrum irradiation:Nonplasmonic metal nanoparticles[J]. Angew Chem Int Ed, 2014, 53(11):2935-2940. doi: 10.1002/anie.201308145
    [13]
    TANA T, GUO X, XIAO Q, HUANG Y, SARINA S, CHRISTOPHER P, JIA J, WU H, ZHU H. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions[J]. Chem Commun, 2016, 52(77):11567-11570. doi: 10.1039/C6CC05186C
    [14]
    GUO X, JIAO Z, JIN G, GUO X. Photocatalytic fischer-tropsch synthesis on graphene-supported worm-like ruthenium nanostructures[J]. ACS Catal, 2015, 5(6):3836-3840. doi: 10.1021/acscatal.5b00697
    [15]
    LIU H, T. DAO D, LIU L, MENG X, NAGAO T, YE J. Light assisted CO2 reduction with methane over group VⅢ metals:Universality of metal localized surface plasmon resonance in reactant activation[J]. Appl Catal B:Environ, 2017, 209, 183-189. doi: 10.1016/j.apcatb.2017.02.080
    [16]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [17]
    LIU H, WU Z, WANG R, DONG M, WANG G, QIN Z, Ma J, HUANG Y, WANG J, FAN W. Structural and electronic feature evolution of Au-Pd bimetallic catalysts supported on graphene and SiO2 in H2 and O2[J]. J Catal, 2019, 376:44-56. doi: 10.1016/j.jcat.2019.06.049
    [18]
    HENKELMAN G, JONSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Chem Phys, 2000, 113(22):9978-9985. doi: 10.1063/1.1323224
    [19]
    HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22):9901-9904. doi: 10.1063/1.1329672
    [20]
    ZHU T, LI J, YIP S. Atomistic study of dislocation loop emission from a crack tip[J]. Phys Rev Lett, 2004, 93(2):025503. doi: 10.1103/PhysRevLett.93.025503
    [21]
    WANG Y, WANG G. A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110):Potassium effect[J]. ACS Catal, 2019, 9(3):2261-2274. doi: 10.1021/acscatal.8b04427
    [22]
    LIU Z, UANG Y, XIAO Q, ZHU H. Selective reduction of nitroaromatics to azoxy compounds on supported Ag-Cu alloy nanoparticles through visible light irradiation[J]. Green Chem, 2016, 18(3):817-825. doi: 10.1039/C5GC01726B
    [23]
    XIAO Q, LIU Z, BO A, ZAVAHIR S, SARINA S, BOTTLE S, RICHES J D, ZHU H. Catalytic transformation of aliphatic alcohols to corresponding esters in O2 under neutral conditions using visible-light irradiation[J]. J Am Chem Soc, 2015, 137(5):1956-1966. doi: 10.1021/ja511619c
    [24]
    HAO C H, GUO X N, PAN Y T, CHEN S, JIAO Z F, YANG H, GUO X Y. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts[J]. J Am Chem Soc, 2016, 138(30):9361-9364. doi: 10.1021/jacs.6b04175
    [25]
    LINIC S, ASLAM U, BOERIGTER C, MORABITO M. Photochemical transformations on plasmonic metal nanoparticles[J]. Nat Mater, 2015, 14(6):567-576. doi: 10.1038/nmat4281
    [26]
    LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011, 10(12):911-921. doi: 10.1038/nmat3151
    [27]
    LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, JIANG Z, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648):80-83. doi: 10.1038/nature21672
    [28]
    OCHOA J V, TREVISANUT C, MILLET J M, BUSCA G, CAVANI F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides[J]. J Phy Chem C, 2013, 117(45):23908-23918. doi: 10.1021/jp409831t
    [29]
    CESAR D V, SANTORI G F, POMPEO F, BALDANZA M A, HENRIQUES C A, LOMBAEDO E, SCHMAL M, CORNAGLIA L, NICHIO N N. Hydrogen production from ethylene glycol reforming catalyzed by Ni and Ni-Pt hydrotalcite-derived catalysts[J]. Int J Hydrogen Energy, 2016, 41(47):22000-22008. doi: 10.1016/j.ijhydene.2016.07.168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (206) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return