Volume 46 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 641-648.
Citation: YANG Zhi-rong, MENG Qing-yan, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Interaction between Shenmu coal and different caking coals during co-pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 641-648.

Interaction between Shenmu coal and different caking coals during co-pyrolysis

Funds:

the National Key Research and Development Program 2016YFB 0600401-01

More Information
  • Corresponding author: HUANG Jie-jie, E-mail: huangjj@sxicc.ac.cn
  • Received Date: 2018-03-12
  • Rev Recd Date: 2018-05-09
  • Available Online: 2021-01-23
  • Publish Date: 2018-06-10
  • The pyrolysis characteristic of blended coal and the interaction between Shenmu coal (SMC) and caking coals(Fat coal-FM, gas coal-QM, coking coal-JM) were studied by temperature-programmed thermobalance. The pyrolysis kinetics were analyzed using distributed activation energy model (DAEM). The results indicate that the concentrated release rate of moisture increases and temperature corresponding to the release peak of volatile matter(tmax) for coal blends decreases as increasing SMC blending ratio. The inhibition of blended coal is reduced as increasing SMC blending ratio when pyrolysis temperature surpasses the solidified temperature of metaplast (>460-480 ℃), indicating a poor bonding behavior of metaplast. In addition, the inhibition of blended coal is enhanced and its bonding behavior is improved with increasing heating rate. The effects of relieving swelling pressure and improving dispersity of metaplast gradually reduce as deepening the metamorphic degree of caking coal from QM, FM to JM, since the corresponding temperature for promoting interaction (release of volatile) is below, within, above the plastic temperature range of caking coals, respectively. A comparison of experimental and calculated distributed activation energy model confirms the interaction mechanism of blended coal during co-pyrolysis.
  • loading
  • [1]
    李莹. 中国焦化行业现状及发展建议[D]. 北京: 对外经济贸易大学, 2006.

    LI Ying. The present situation and development proposal of coking industry in China[D]. Beijing: University of International Business and Economics, 2006.
    [2]
    沈大勇.浅谈徐州焦化行业现状及对策建议[J].中国资源综合利用, 2016, 34(5):46-48. http://www.cqvip.com/QK/95696A/201605/669294948.html

    SHEN Da-yong. Suggestions and status of Xuzhou coking industry[J]. China Resour Compr Util, 2016, 34(5):46-48. http://www.cqvip.com/QK/95696A/201605/669294948.html
    [3]
    YE C, WANG Q H, LUO Z Y, XIE G L, JIN K, SIYIL M, CEN K F. Characteristics of coal partial gasification on a circulating fluidized bed reactor[J]. Energy Fuels, 2017, 31:2557-2564. doi: 10.1021/acs.energyfuels.6b02889
    [4]
    孟庆岩, 杨志荣, 黄戒介, 王志青, 李春玉, 房倚天.神木煤与黏结煤配伍制气化焦的黏结特性[J].煤炭转化, 2017, 40(5):45-49. http://www.cqvip.com/QK/92653X/201502/664576471.html

    MENG Qing-yan, YANG Zhi-rong, HUANG Jie-jie, WANG Zhi-qing, LI Chun-yu, FANG Yi-tian. Caking property of Shenmu coal and caking coal blending coals for coke-making[J]. Coal Convers, 2017, 40(5):45-49. http://www.cqvip.com/QK/92653X/201502/664576471.html
    [5]
    白效言, 裴贤丰, 王岩.焦化企业转型生产气化焦技术经济分析[J].煤质技术, 2016, S1:16-19. http://www.cqvip.com/QK/90368X/201606/669390253.html

    BAI Xiao-yan, PEI Xian-feng, WANG Yan. Technology and economic analysis on coking enterprise transformation to produce coke for gasification[J]. Coal Qual Technol, 2016, S1:16-19. http://www.cqvip.com/QK/90368X/201606/669390253.html
    [6]
    徐秀丽.气化焦生产及焦粒造气工艺技术经济性探讨[J].煤炭加工与综合利用, 2016, 6:37-40. http://www.cqvip.com/QK/90368X/201606/669390253.html

    XU Xiu-li. Technical and economical discussion about gasified coke production and gas making by coke particle[J]. Coal Process Compr Util, 2016, 6:37-40. http://www.cqvip.com/QK/90368X/201606/669390253.html
    [7]
    YANG Z R, MENG Q Y, HUANG J J, WANG Z Q, LI C Y, FANG Y T. A particle-size regulated approach to producing high strength gasification-coke by blending a larger proportion of long flame coal[J]. Fuel Process Technol, 2018, 177:101-108. doi: 10.1016/j.fuproc.2018.04.024
    [8]
    DUFFY J, MAHONEY M, STEEL M. Influence of coal thermoplastic properties on coking pressure generation:Part 1- A study of binary coal blends and specific additives[J]. Fuel, 2010, 89:1590-1599. doi: 10.1016/j.fuel.2009.08.031
    [9]
    CASCAL M, DIAZ-FAES E, ALVAREZ R. Influence of the permeability of the coal plastic layer on coking pressure[J]. Fuel, 2006, 85:281-288. doi: 10.1016/j.fuel.2005.06.009
    [10]
    NYATHI M S, MASTALERZ M, KRUSE R. Influence of coke particle size on pore structural determination by optical microscopy[J]. Int J Coal Geol, 2013, 118:8-14. doi: 10.1016/j.coal.2013.08.004
    [11]
    WU Z Q, WANG S Z, ZHAO J, CHEN L, MENG H Y. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal[J]. Bioresource Technol, 2014, 169:220-228. doi: 10.1016/j.biortech.2014.06.105
    [12]
    MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels, 1998, 12(5):864-869. doi: 10.1021/ef970212q
    [13]
    VAND V. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum[J]. Proc Phys Soc, 1942, 55(3):222-246.
    [14]
    PITT G J. The kinetics of the evolution of volatile products from coal[J]. Fuel, 1962, 41(3):267-274. https://www.deepdyve.com/lp/wiley/modeling-of-coal-pyrolsis-kinetics-MVNm2BphwC
    [15]
    CHEN S J, YANG Z, CHEN L, TAO X X, TANG L F, HE H. Wetting thermodynamics of low-rank coal and attachment in flotation[J]. Fuel, 2017, 207:214-225. doi: 10.1016/j.fuel.2017.06.018
    [16]
    姚娜. 生物质快速热解特性实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.

    YAO Na. Experimental study on the behavior of biomass fast pyrolysis[D]. Harbin: Harbin Institute of Technology, 2008.
    [17]
    王琳俊, 马阳, 刘加勋, 姜秀民.超细煤粉热解特性及热解反应动力学研究[J].锅炉技术, 2015, 46(6):73-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gljs201506016

    WANG Lin-jun, MA Yang, LIU Jia-xun, JIANG Xiu-min. Study of superfine pulverized coal pyrolysis and thermodynamic parameters[J]. Boiler Technol, 2015, 46(6):73-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gljs201506016
    [18]
    薛伟. 生物质与褐煤共热解热重实验研究及动力学分析[D]. 昆明: 昆明理工大学, 2013.

    XUE Wei. Biomass pyrolysis with lignite thermogravimetric experiment research and dynamic analysis[D]. Kunming: Kunming University of Science and Technology, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (199) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return