Volume 47 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
CHENG Jiang-hao, SU Ya-xin, LIN Rui, ZHANG Xian-wei, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 823-833.
Citation: CHENG Jiang-hao, SU Ya-xin, LIN Rui, ZHANG Xian-wei, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 823-833.

Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts

Funds:

Jiangsu Province Natural Science Foundation BK20181161

the Fundamental Research Funds for the Central Universities 2232019D3-24

National Natural Science Foundation of China 51278095

More Information
  • Corresponding author: SU Ya-xin, Tel: 021-67792552, E-mail: suyx@dhu.edu.cn
  • Received Date: 2019-03-28
  • Rev Recd Date: 2019-05-10
  • Available Online: 2021-01-23
  • Publish Date: 2019-07-10
  • In order to improve the low temperature activity of Fe/Al-PILC catalysts for SCR of NO, copper doping was used for the modification. xCu-Fe/Al-PILC catalysts were prepared by ultrasonic impregnation technique and characterized by XRD, N2 adsorption-desorption, H2-TPR, UV-vis, XPS and Py-FTIR. The SCR of NO with C3H6 tests were carried out in a fixed bed reactor. The experimental results showed that the xCu-Fe/Al-PILC catalysts can effectively solve the problem of insufficient SCR activity of Fe/Al-PILC catalysts at low temperature and as well as improve the activity at medium and high temperature. High NO reduction efficiency, 80% and beyond could be achieved at a wide temperature range of 200-500℃ by the catalysts, among which 0.13Cu-Fe/Al-PILC exhibited 90% of the NO conversion at 250-500℃ and maximum NO reduction efficiency of 93% at 250℃. XRD and N2 adsorption-desorption results proved that the catalysts modified by copper provided more active sites and increased the reaction rate. The results of H2-TPR indicated that the doping of copper improved the catalyst's redox ability at lower temperature, while enhanced the catalyst's redox ability at medium and high temperature. UV-vis and XPS study showed that the doping of copper not only increased the higher oxidation state of iron but also produced more isolated Fe3+ which is the low-temperature active species. Py-FTIR test illustrated that Lewis acid and Brönsted acid existed simultaneously on the catalyst surface, and Lewis acid sites were the activity center of the SCR reaction.
  • loading
  • [1]
    IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Cataly, 1990, 32(6):430-433.
    [2]
    HELD W, KOENIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990, 99(4):209-216.
    [3]
    GU H, CHUN K M, SONG S. The effects of hydrogen on the efficiency of NOx reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants[J]. Int J Hydrogen Energy, 2015, 40(30):9602-9610. doi: 10.1016/j.ijhydene.2015.05.070
    [4]
    LI L D, GUAN N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts[J]. Microporous Mesoporous Mater, 2009, 117(1/2):450-457.
    [5]
    SCHURICHT F, RESCHETILOWSKI W. Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5-catalytic studies and mechanistic implications[J]. Microporous Mesoporous Mater, 2012, 164:135-144. doi: 10.1016/j.micromeso.2012.07.018
    [6]
    YAN S H, WANG X P, WANG W C, LIU Z Q, NIU J H. Selective catalytic reduction of NO by C2H2 over Ce-Al2O3 catalyst with rate-determining step of NO oxidation[J]. J Nat Gas Chem, 2012, 21(3):332-338. doi: 10.1016/S1003-9953(11)60373-3
    [7]
    MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B:Environ, 2015, 174-175:145-156. doi: 10.1016/j.apcatb.2015.02.035
    [8]
    周皞, 苏亚欣, 邓文义, 钟方川.金属氧化物类催化剂上HC-SCR研究进展[J].环境科学与技术, 2016, 39(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201601015

    ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol, 2016, 39(1):94-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201601015
    [9]
    周皞, 苏亚欣, 邓文义, 钟方川.负载金属分子筛类催化剂上HC-SCR研究进展[J].环境科学与技术, 2015, 38(10):64-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201510013

    ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal-based zeolite catalysts[J]. Environ Sci Technol, 2015, 38(10):64-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201510013
    [10]
    王琪莹, 文焱炳, 董新法, 林维明.交联粘土合成及其在C3H6选择性催化还原NOx中的应用研究[J].高校化学工程学报, 2006, 4(20):598-603. http://d.old.wanfangdata.com.cn/Periodical/gxhxgcxb200604019

    WANG Qi-ying, WEN Yan-bing, DONG Xin-fa, LIN Wei-ming. Application of pillared clays in selective catalytic reduction of NOx by C3H6[J]. J Chem Eng Chin Univ, 2006, 4(20):598-603. http://d.old.wanfangdata.com.cn/Periodical/gxhxgcxb200604019
    [11]
    MENDIOROZ S, MART N-ROJO A B, RIVERA F, MART N J C, BAHAMONDE A, YATES M. Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays[J]. Appl Catal B:Environ, 2006, 64(3/4):161-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1754cdea4772b59fcd46a39df8822d6
    [12]
    YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998, 19(3/4):289-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a7e95b2e4590b9c44dca3f71df0a5ea
    [13]
    KONIN G A, IŁICHEV A N, MATYSHAK V A, KHOMENKO T I, KORCHAK V N, SADYKOV V A, DORONIN V P, BUNINA R V, ALIKINA G M, KUZNETSOVA T G, PAUKSHTIS E A, FENELONOV V B, ZAIKOVSKⅡ V I, IVANOVA A S, BELOSHAPKIN S A, ROZOVSKⅡ A Y, TRETYAKOV V F, ROSS J R H, BREEN J P. Cu, Co, Ag-containing pillared clays as catalysts for the selective reduction of NOx by hydrocarbons in an excess of oxygen[J]. Top Catal, 2001, 16/17(1/4):193-197. doi: 10.1023/A:1016667822516
    [14]
    ZHOU H, LI K K, ZHAO B T, DENG W Y, SU Y X, ZHONG F C. Surface properties and reactivity of Fe/Al2O3/cordierite catalysts for NO reduction by C2H6:Effects of calcination temperature[J]. Chem Eng J, 2017, 326:737-744. doi: 10.1016/j.cej.2017.06.018
    [15]
    ZHOU H, SU Y X, LIAO W Y, DENG W Y, ZHONG F C. Preparation, characterization, and properties of monolithic Fe/Al2O3/cordierite catalysts for NO reduction with C2H6[J]. Appl Catal A:Gen, 2015, 505:402-409. doi: 10.1016/j.apcata.2015.08.025
    [16]
    苏亚欣, 陆哲惺, 周皞, 窦逸峰, 邓文义.丙烷在金属铁表面还原NO的实验研究[J].燃料化学学报, 2014, 42(12):1470-1477. doi: 10.3969/j.issn.0253-2409.2014.12.009

    SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. J Fuel Chem Technol, 2014, 42(12):1470-1476. doi: 10.3969/j.issn.0253-2409.2014.12.009
    [17]
    苏亚欣, 苏阿龙, 成豪.金属铁直接催化还原NO的实验研究[J].煤炭学报, 2013, 38(s1):206-210. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1036

    SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013, 38(s1):206-210. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1036
    [18]
    钱文燕, 苏亚欣, 杨溪, 袁旻昊, 邓文义, 赵兵涛. Fe/Al-PILC催化C3H6选择性还原NO的实验研究[J].燃料化学学报, 2017, 45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012

    QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017, 45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012
    [19]
    YUAN M H, DENG W Y, DONG S L, LI Q C, ZHAO B T, SU Y X. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chem Eng J, 2018, 353:839-848. doi: 10.1016/j.cej.2018.07.201
    [20]
    董士林, 苏亚欣, 刘欣, 李前程, 袁旻昊, 周皞, 邓文义. Fe/Ti-PILC用于C3H6选择性催化还原NO的研究[J].燃料化学学报, 2018, 46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011

    DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. J Fuel Chem Technol, 2018, 46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011
    [21]
    SATO S, YU-U Y, YAHIRO H, MIZUNO N, IWAMOTO M. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines[J]. Appl Catal, 1991, 70(1):L1-L5.
    [22]
    LI X Y, LU G, QU Z P, ZHANG D K, LIU S M. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene[J]. Appl Catal A:Gen, 2011, 398(1/2):82-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a77b4e983a702a154de3322732c6683
    [23]
    LU G, LI X Y, QU Z P, ZHAO Q D, ZHAO L, CHEN G H. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chem Eng J, 2011, 168(3):1128-1133. doi: 10.1016/j.cej.2011.01.095
    [24]
    DORADO F, GARCÍA P B, DE LUCAS A, RAMOS M J, ROMERO A. Hydrocarbon selective catalytic reduction of NO over Cu/Fe-pillared clays:Diffuse reflectance infrared spectroscopy studies[J]. J Mol Catal A:Chem, 2010, 332(1/2):45-52.
    [25]
    朱斌, 费兆阳, 陈献, 汤吉海, 崔咪芬, 乔旭. Al-PILC负载铜铁复合氧化物选择性催化还原NO中的协同作用[J].燃料化学学报, 2014, 42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011

    ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014, 42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011
    [26]
    VALVERDE J L, DE LUCAS A, SÁNCHEZ P, DORADO F, ROMERO A. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B:Environ, 2003, 43(1):43-56. doi: 10.1016/S0926-3373(02)00274-6
    [27]
    WANG Q Y, LIU Z L, WU J R. Effect of preparation methods on Ti-PILCs catalysts in selective catalytic reduction of NO by propylene[J]. Adv Mater Res, 2014, 1033/1034:90-94. doi: 10.4028/www.scientific.net/AMR.1033-1034
    [28]
    KIM B S, LEE S H, PARK Y T, HAM S W, CHAE H J, NAM I S. Selective catalytic reduction of NOx by propene over copper-exchanged pillared clays[J]. Korean J Chem Eng, 2001, 18(5):704-710. doi: 10.1007/BF02706390
    [29]
    文焱炳, 董新法, 林维明. Cu/Ce-Ti-PILC上丙烯选择催化还原NO的研究[J].广州大学学报(自然科学版), 2008, 7(1):53-57. doi: 10.3969/j.issn.1671-4229.2008.01.012

    WEN Yan-bing, DONG Xin-fa, LIN Wei-min. Study on Cu/Ce-Ti-PILC for selective catalytic reduction of NO bypropylen[J]. J Guangzhou Unv(Nat Sci Edi), 2008, 7(1):53-57. doi: 10.3969/j.issn.1671-4229.2008.01.012
    [30]
    QI G S, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005, 287(1):25-33. doi: 10.1016/j.apcata.2005.03.006
    [31]
    KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010, 275(2):187-190.
    [32]
    XIA Y, ZHAN W C, GUO Y, GUO Y L, LU G Z. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3:Influence of Fe content[J]. Chin J Catal, 2016, 37(12):2069-2078. doi: 10.1016/S1872-2067(16)62534-2
    [33]
    DELAHAY G, VALADE D, GUZMANVARGAS A, COQ B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods[J]. Appl Catal B:Environ, 2005, 55(2):149-155. doi: 10.1016/j.apcatb.2004.07.009
    [34]
    LU R J, ZHANG X Y, MA C Y, WANG Z, WANG Y F, HAO Z P. Fe-Beta catalysts prepared by heating wet ion exchange and their catalytic performances on N2O catalytic decomposition and reduction[J]. Asia-Pac J Chem Eng, 2014, 9(2):159-166. doi: 10.1002/apj.1754
    [35]
    SCHWIDDER M, KUMAR M S, KLEMENTIEV K, POHL M M, BRVCKNER A, GRVNERT W. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content. Relations between active site structure and catalytic performance[J]. J Catal, 2005, 231(2):314-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=414ff593b03c29a74bea1b1873ecfcae
    [36]
    OLIVEIRA L C A, RIOS R V R A, FABRIS J D, SAPAG K, GARG V K, LAGO R M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Appl Clay Sci, 2003, 22(4):169-177. doi: 10.1016/S0169-1317(02)00156-4
    [37]
    DORADO F, DE LUCAS A, GARCÍA P B, ROMERO A, VALVERDE J L. Copper ion-exchanged and impregnated Fe-pillared clays Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6[J]. Appl Catal A:Gen, 2006, 305(2):189-196. doi: 10.1016/j.apcata.2006.03.022
    [38]
    YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998, 19(3/4):289-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a7e95b2e4590b9c44dca3f71df0a5ea
    [39]
    JIN Y M, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature programmed reduction[J]. J Catal, 2000, 196(1):8-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=694a2cac373767d8b1055eec1c94d292
    [40]
    SUN M M, CAO Y, LAN L, ZOU S, FANG Z T, CHEN Y Q. Selective catalytic oxidation of ammonia to nitrogen over iron and copper bimetallic catalysts[J]. Acta Phys-Chim Sin, 2014, 30(12):2300-2306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201412014
    [41]
    KUMAR M S, SCHWIDDER M, GRVNERT W, BRVCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts:New insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal, 2004, 227(2):384-397.
    [42]
    LU L, LI L, WANG X, LI G. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3.[J]. J Phys Chem B, 2005, 109(36):17151-17156. doi: 10.1021/jp052780+
    [43]
    TIPPINS H H. Charge-transfer spectra of transition-metal ions in corundum[J]. Phys Rev B, 1970, 1(1):126-135. doi: 10.1103/PhysRevB.1.126
    [44]
    GIORDANINO F, VENNESTROM P N R LUNDEGAARD L F, STAPPEN F N, MOSSIN S, BEATO P, BORDIGA S, LAMBERTI C. Characterization of Cu-exchanged SSZ-13:A comparative FT-IR, UV-Vis and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios[J]. Dalton Trans, 2013, 42(35):12741-12761. doi: 10.1039/c3dt50732g
    [45]
    ISMAGILOV Z R, YASHNIK S A, ANUFRIENKO V F, LARINA T V, VASENIN N T, BULGAKOV N N, VOSELET S V, TSYKOZA L T. Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts[J]. Appl Surf Sci, 2004, 226(1/3):88-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a1a010b569910ec98a76c8ff1f8dfe52
    [46]
    KIM M H, NAM I-S, KIM Y G. Characteristics of mordenite-type zeolite catalysts deactivated by SO2 for the reduction of NO with hydrocarbons[J]. J Catal, 1998, 179(2):350-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c2eb7ed5ad12d39edce8db0f9ea918a
    [47]
    CHADWICK D, HASHEMI T. Adsorbed corrosion inhibitors studied by electron spectroscopy:Benzotriazole on copper and copper alloys[J]. Corros Sci, 1978, 18(1):39-51.
    [48]
    GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012, 134(34):13922-13925. doi: 10.1021/ja3034153
    [49]
    GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, WANG C, HUANG C, CHEN X D, MA L L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Appl Catal A:Gen, 2015, 503(25):51-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ee6a28e5bd3bc7e39e77a92fa51fede0
    [50]
    LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surf A, 2004, 244(1/3):169-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ee0110808fbd57b633b0f8aa7605439
    [51]
    DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992, 135(1):186-199. doi: 10.1016-0021-9517(92)90279-Q/
    [52]
    BARZETTI T, SELLI E, MOSCOTTI D, FORNI L. Pyridine and ammonia as probes for FT-IR analysis of solid acid catalysts[J]. J Chem Soc Faraday Trans, 1996, 92(8):1401-1407. doi: 10.1039/ft9969201401
    [53]
    SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Catal Lett, 2007, 114(1/2):96-102.
    [54]
    CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIKET M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011, 53(2):164-173. doi: 10.1016/j.clay.2010.12.009
    [55]
    LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-Exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999, 186(2):254-268. doi: 10.1006/jcat.1999.2558
    [56]
    EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine absorbed on solid acid catalysts[J]. J Catal, 1993, 141(2):347-354. doi: 10.1006/jcat.1993.1145
    [57]
    LI J H, ZHU Y Q, KE R, HAO J M. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Appl Catal B:Environ, 2008, 80(3/4):202-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41d373430a14d628f325b34238946ecf
    [58]
    DATKA J, GIL B, KUBACKA A. Heterogeneity of OH groups in H-mordenites:Effect of dehydroxylation[J]. Zeolites, 1996, 17(5/6):428-433.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (510) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return