Volume 47 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
YUAN Song, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, ZHUANG Xiu-zheng, YIN Xiu-li, WU Chuang-zhi. Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 39-52.
Citation: YUAN Song, HUANG Yan-qin, LIU Hua-cai, YUAN Hong-you, ZHUANG Xiu-zheng, YIN Xiu-li, WU Chuang-zhi. Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 39-52.

Effects of low-temperature hydrothermal pretreatment of high-protein Chlorella sp.on N distribution and thermal degradation of solid residue

Funds:

the National Natural Science Foundation of China 51776207

Science and Technology Program of Guangzhou 201804010153

Natural Science Foundation of Guangdong Province 2017B030308002

More Information
  • Corresponding author: HUANG Yan-qin, E-mail:huangyq@ms.giec.ac.cn
  • Received Date: 2018-08-24
  • Rev Recd Date: 2018-11-05
  • Available Online: 2021-01-23
  • Publish Date: 2019-01-10
  • Decomposition behavior of Chlorella sp. during low-temperature hydrothermal pretreatment (HTP) were studied. Distribution of various product yields, element components, energy recovery ratio and key elements (i.e., C and N) along with temperature (125-200℃) were investigated. The results show that amounts of C and N are enriched into aqueous phase, and high content of NH3-N is detected due to deamination reaction above 175℃. During the HTP process, N distribution in oil product first increases gradually and then rapidly increases above 175℃. During the whole low-temperature HTP process, the yield and energy recovery ratio of solid residue decreases continuously. The N/C and O/C ratio of the solid residue also decreases, indicating HPT would promote property of the solid residue. The functional structure and thermal-degradation of Chlorella sp. and its solid residue are then comparatively examined by various techniques including FT-IR, XPS, TG-FTIR-MS and Py-GC/MS. The results show that functional structure of the solid residue is distinguished from that of the raw sample. The relative content of C-C bond increases while that of C-N and C-O bonds decreases. In addition to protein-N and quaternary-N, a low fraction of pyridine-N is also detected in the solid residue. Compared with these from raw material, less NH3 and HCN are released from solid residue, and less N-containing heterocyclic compounds are generated during rapid pyrolysis.
  • loading
  • [1]
    ALBA L G, TORRI C, SAMORI C, VAN DER SPEK J, FABBRI D, KERSTEN S R A, BRILMAN D W F. Hydrothermal treatment (HTT) of microalgae:Evaluation of the process as conversion method in an algae biorefinery concept[J]. Energy Fuels, 2012, 26(1):642-657. doi: 10.1021/ef201415s
    [2]
    SABER M, NAKHSHINIEV B, YOSHIKAWA K. A review of production and upgrading of algal bio-oil[J]. Renewable Sustainble Energy Rev, 2016, 58:918-930. doi: 10.1016/j.rser.2015.12.342
    [3]
    AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable Sustainble Energy Rev, 2011, 15(3):1615-1624. doi: 10.1016/j.rser.2010.11.054
    [4]
    DIMITRIADIS A, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:A state of the art review[J]. Renewable Sustainable Energy Rev, 2017, 68:113-125. doi: 10.1016/j.rser.2016.09.120
    [5]
    XU Y P, DUAN P G, WANG F. Hydrothermal processing of macroalgae for producing crude bio-oil[J]. Fuel Process Technol, 2015, 130:268-274. doi: 10.1016/j.fuproc.2014.10.028
    [6]
    SINGH R, BHASKAR T, BALAGURUMURTHY B. Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata[J]. Process Saf Environ Protect, 2015, 93:154-160. doi: 10.1016/j.psep.2014.03.002
    [7]
    GUO Q J, WU M, WANG K, ZHANG L, XU X F. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts[J]. Ind Eng Chem Res, 2015, 54(3):890-899. doi: 10.1021/ie5042935
    [8]
    DUAN P, WANG B, XU Y. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae[J]. Bioresour Technol, 2015, 186:58-66. doi: 10.1016/j.biortech.2015.03.050
    [9]
    SINGH R, BALAGURUMURTHY B, BHASKAR T. Hydrothermal liquefaction of macro algae:Effect of feedstock composition[J]. Fuel, 2015, 146:69-74. doi: 10.1016/j.fuel.2015.01.018
    [10]
    BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresour Technol, 2011, 102(1):215-225. doi: 10.1016/j.biortech.2010.06.028
    [11]
    JAZRAWI C, BILLER P, ROSS A B, MONTOYA A, MASCHMEYER T, HAYNES B S. Pilot plant testing of continuous hydrothermal liquefaction of microalgae[J]. Algal Res, 2013, 2(3):268-277. doi: 10.1016/j.algal.2013.04.006
    [12]
    COLE A, DINBURG Y, HAYNES B S, HE Y, HERSKOWITZ M, JAZRAWI C, LANDAU M, LIANG X, MAGNUSSON M, MASCHMEYER T, MASTERS A F, MEIRI N, NEVEUX N, DE NYS R, PAUL N, RABAEV M, VIDRUK-NEHEMYA R, YUEN A K L. From macroalgae to liquid fuel via waste-water remediation, hydrothermal upgrading, carbon dioxide hydrogenation and hydrotreating[J]. Energy Environ Sci, 2016, 9(5):1828-1840. doi: 10.1039/C6EE00414H
    [13]
    CHIARAMONTI D, PRUSSI M, BUFFI M, RIZZO A M, PARI L. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Appl Energy, 2017, 185:963-972. doi: 10.1016/j.apenergy.2015.12.001
    [14]
    GUO Y, YEH T, SONG W, XU D, WANG S. A review of bio-oil production from hydrothermal liquefaction of algae[J]. Renewable Sustainable Energy Rev, 2015, 48:776-790. doi: 10.1016/j.rser.2015.04.049
    [15]
    ARVINDNARAYAN S, SIVAGNANA PRABHU K K, SHOBANA S, KUMAR G, DHARMARAJA J. Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives:A review[J]. Int Biodeterior Biodegrad, 2017, 119:260-272. doi: 10.1016/j.ibiod.2016.08.011
    [16]
    TERI G, LUO L G, SAVAGE P E. Hydrothermal treatment of protein, polysaccharide, and lipids alone and in mixtures[J]. Energy Fuels, 2014, 28(12):7501-7509. doi: 10.1021/ef501760d
    [17]
    JAZRAWI C, BILLER P, HE Y Y, MONTOYA A, ROSS A B, MASCHMEYER T, HAYNES B S. Two-stage hydrothermal liquefaction of a high-protein microalga[J]. Algal Res, 2015, 8:15-22. doi: 10.1016/j.algal.2014.12.010
    [18]
    DU Z, MOHR M, MA X, CHENG Y, LIN X, LIU Y, ZHOU W, CHEN P, RUAN R. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresour Technol, 2012, 120:13-18. doi: 10.1016/j.biortech.2012.06.007
    [19]
    HUANG Z, WUFUER A, WANG Y, DAI L. Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content[J]. Process Biochem, 2018, 69:136-143. doi: 10.1016/j.procbio.2018.03.018
    [20]
    GOLLAKOTA A R K, KISHORE N, GU S. A review on hydrothermal liquefaction of biomass[J]. Renewable Sustainable Energy Rev, 2018, 81:1378-1392. doi: 10.1016/j.rser.2017.05.178
    [21]
    XU D H, SAVAGE P E. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae[J]. Algal Res, 2015, 12:60-67. doi: 10.1016/j.algal.2015.08.005
    [22]
    MIAO C, CHAKRABORTY M, CHEN S. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process[J]. Bioresour Technol, 2012, 110:617-627. doi: 10.1016/j.biortech.2012.01.047
    [23]
    PETERSON A A, VOGEL F, LACHANCE R P, FROLING M, ANTAL M J, TESTER J W. Thermochemical biofuel production in hydrothermal media:A review of sub-and supercritical water technologies[J]. Energy Environ Sci, 2008, 1(1):32-65. doi: 10.1039/b810100k
    [24]
    DOTE Y, INOUE S, OGI T, YOKOYAMA S. Studies on the direct liquefaction of protein-contained biomass:The distribution of nitrogen in the products[J]. Biomass Bioenergy, 1996, 11(6):491-498. doi: 10.1016/S0961-9534(96)00045-1
    [25]
    DOTE Y, INOUE S, OGI T, YOKOYAMA S. Distribution of nitrogen to oil products from liquefaction of amino acids[J]. Bioresour Technol, 1998, 64(2):157-160. doi: 10.1016/S0960-8524(97)00079-5
    [26]
    ZOU S, WU Y, YANG M, KALEEM I, CHUN L, TONG J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae dunaliella tertiolecta cake[J]. Energy, 2010, 35(12):5406-5411. doi: 10.1016/j.energy.2010.07.013
    [27]
    CHEN Y, WU Y L, ZHANG P L, HUA D R, YANG M D, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012, 124:190-198. doi: 10.1016/j.biortech.2012.08.013
    [28]
    HUANG Y Q, CHEN Y P, XIE J J, LIU H C, YIN X L, WU C Z. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp and cultivated Bacillariophyta sp[J]. Fuel, 2016, 183:9-19. doi: 10.1016/j.fuel.2016.06.013
    [29]
    CHEN Y, WU Y, ZHANG P, HUA D, YANG M, LI C, CHEN Z, LIU J. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012, 124:190-198. doi: 10.1016/j.biortech.2012.08.013
    [30]
    WANG S, JIANG D, CAO B, HU Y M, YUAN C, WANG Q, HE Z X, HUI C W, ABOMOHRA A, LIU X L, FENG Y Q, ZHANG B. Study on the interaction effect of seaweed bio-coke and rice husk volatiles during co-pyrolysis[J]. J Anal Appl Pyrolysis, 2018, 132:111-122. doi: 10.1016/j.jaap.2018.03.009
    [31]
    TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013, 47(7):3498-3505. doi: 10.1021/es304248j
    [32]
    MACKINNON S L, HILTZ D, UGARTE R, CRAFT C A. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts[J]. J Appl Phycol, 2010, 22(4):489-494. doi: 10.1007/s10811-009-9483-0
    [33]
    RIZZI G P. Free radicals in the maillard reaction[J]. Food Rev Int, 2003, 19(4):375-395. doi: 10.1081/FRI-120025481
    [34]
    WANG S, WANG Q, HU Y M, XU S N, HE Z X, JI H S. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique[J]. J Anal Appl Pyrolysis, 2015, 114:109-118. doi: 10.1016/j.jaap.2015.05.008
    [35]
    LI R, ZHONG Z, JIN B, ZHENG A. Selection of temperature for bio-oil production from pyrolysis of algae from lake blooms[J]. Energy Fuels, 2012, 26(5):2996-3002. doi: 10.1021/ef300180r
    [36]
    SEBESTYEN Z, BARTA-RAJNAI E, CZEGENY Z, BHASKAR T, KRISHNA B B, MAY Z, BOZI J, BARTA Z, SINGH R, JAKAB E. Thermoanalytical characterization and catalytic conversion of deoiled micro algae and jatropha seed cake[J]. Energy Fuels, 2016, 30(10):7982-7993. doi: 10.1021/acs.energyfuels.6b01024
    [37]
    YANG H, YAN R, CHEN H, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13):1781-1788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3fa85712db16f40b571417e71fe15255
    [38]
    SINGH S, WU C, WILLIAMS P T. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques[J]. J Anal Appl Pyrolysis, 2012, 94:99-107. doi: 10.1016/j.jaap.2011.11.011
    [39]
    HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004, 137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
    [40]
    CHIAVARI G, GALLETTI G C. Pyrolysis-gas chromatography mass-spectrometry of amino-acids[J]. J Anal Appl Pyrolysis, 1992, 24(2):123-137. doi: 10.1016/0165-2370(92)85024-F
    [41]
    GAUTAM R, VARMA A K, VINU R. Apparent kinetics of fast pyrolysis of four different microalgae and product analyses using pyrolysis-FTIR and pyrolysis-GC/MS[J]. Energy Fuels, 2017, 31(11):12339-12349. doi: 10.1021/acs.energyfuels.7b02520
    [42]
    MIAO X, WU Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[J]. J Biotechnol, 2004, 110(1):85-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c14b75b846385f5109c3c6782cf780cc
    [43]
    ROSS A B, JONES J M, KUBACKI M L, BRIDGEMAN T. Classification of macroalgae as fuel and its thermochemical behavior[J]. Bioresour Technol, 2008, 99(14):6494-6504. doi: 10.1016/j.biortech.2007.11.036
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (104) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return