Volume 46 Issue 9
Sep.  2018
Turn off MathJax
Article Contents
ZHANG Yun-peng, LI Ming-gang, XING En-hui, LUO Yi-bin, SHU Xing-tian. Methanol to propylene reaction performance and trapped carbonaceous species over zeolites with different topologies[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1101-1112.
Citation: ZHANG Yun-peng, LI Ming-gang, XING En-hui, LUO Yi-bin, SHU Xing-tian. Methanol to propylene reaction performance and trapped carbonaceous species over zeolites with different topologies[J]. Journal of Fuel Chemistry and Technology, 2018, 46(9): 1101-1112.

Methanol to propylene reaction performance and trapped carbonaceous species over zeolites with different topologies

More Information
  • Corresponding author: LUO Yi-bin, E-mail: luoyibin.ripp@sinopec.com
  • Received Date: 2018-05-08
  • Rev Recd Date: 2018-07-07
  • Available Online: 2021-01-23
  • Publish Date: 2018-09-10
  • Mesoporous ZSM-5 (MFI), MCM-22 (MWW), ZSM-22 (TON) and SSZ-13 (CHA) zeolites were obtained by TEAOH and NaOH solution treatment. Under the following operating conditions:t=480℃, p=0.1 MPa, m(methanol):m(H2O)=1:1 and WHSV (methanol)=1.5 h-1, the catalytic properties of four mesoporous zeolites with different topologies were investigated in the methanol to propylene (MTP) reaction. The fresh and spent samples after 2 h were characterized with XRD, nitrogen adsorption experiments, NH3-TPD, TG, UV-Rama and GC-MS techniques. It demonstrated that both zeolites exist mesopores after treated by alkali. The mesoporous T-ZSM-5 zeolite had the highest lifetime; the lifetime of T-MCM-22 zeolite with was secondary and deactivation rate was slow; The N-ZSM-22 with one-dimensional channel structure and N-SSZ-13 zeolite with 8-member ring channels both deactivated rapidly. Due to the difference of topology structure and diffusion performance, their coke contents after 2 h increased in the order:T-ZSM-5 < N-ZSM-22 < T-MCM-22 < N-SSZ-13. Moreover, the molecular weight of soluble coke increased with the increasing of coke contents, changed from pentamethylbenzene to polycyclic aromatic hydrocarbons, such as phenanthrene and pyrene.
  • loading
  • [1]
    STOCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1):3-48. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201205011
    [2]
    CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal today, 2005, 106(1):103-107. http://cn.bing.com/academic/profile?id=ab2e8c6aab97bd946516d8db695f5673&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    MEI C, WEN P, LIU Z, LIU H, WANG Y, YANG W, XIE Z, HUA W, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008, 258(1):243-249. doi: 10.1016/j.jcat.2008.06.019
    [4]
    CUI T L, LV L B, ZHANG W B, LI X H, CHEN J S. Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process[J]. Catal Sci Technol, 2016, 6(14):5262-5266. doi: 10.1039/C6CY00379F
    [5]
    SUN C, DU J, LIU J, YANG Y, REN N, SHEN W, XU H, TANG Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction[J]. Chem Commun, 2010, 46(15):2671-2673. doi: 10.1039/b925850g
    [6]
    LI H, WANG Y, FAN C, SUN C, WANG X, WANG C, ZHANG X, WANG S. Facile synthesis of a superior MTP catalyst:Hierarchical micro-meso-macroporous ZSM-5 zeolites[J]. App Catal A:Gen, 2018, 551:34-48. doi: 10.1016/j.apcata.2017.12.007
    [7]
    DAI C, ZHANG A, LI L, HOU K, DING F, LI J, MU D, SONG C, LIU M, GUO X. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment[J]. Chem Mater, 2013, 25(21):4197-4205. doi: 10.1021/cm401739e
    [8]
    HE Y, LIU M, DAI C, XU S, WEI Y, LIU Z, GUO X. Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction[J]. Chin J Catal, 2013, 34(6):1148-1158. doi: 10.1016/S1872-2067(12)60579-8
    [9]
    SHI Y, XING E, XIE W, ZHANG F, MU X, SHU X. Enhancing activity without loss of selectivity-Liquid-phase alkylation of benzene with ethylene over MCM-49 zeolites by TEAOH post-synthesis[J]. App Catal A:Gen, 2015, 497(1):135-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234833093
    [10]
    CAMPO P D, BEATO P, REY F, NVARRO M T, OLSBYE U, LILLERUD K P, SVELLE S. Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite[J]. Catal Today, 2017, 299:120-134. http://cn.bing.com/academic/profile?id=f5b3cdcc3164cf53383ae7320e7eceff&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    CAMPO P D, OLSBYE U, LILLERUD K P, SVELLE S, BEATO P. Impact of post-synthetic treatments on unidirectional H-ZSM-22 zeolite catalyst:Towards improved clean MTG catalytic process[J]. Catal Today, 2017. 299:135-145. http://cn.bing.com/academic/profile?id=2bb79cc129bff74f8d2856c9e3a198d7&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    SOMMER L, MORES D, SVELLE S, STOCKER M, WECKHUYSEN B M, OLSBYE U. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH[J]. Microporous Mesoporous Mater, 2013, 132(3):384-394. http://cn.bing.com/academic/profile?id=d70d3df6e5cebb99fd6314813cd8ecfc&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    JI W P, LEE J Y, KIM K S, HONG S B, SEO G. Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions[J]. App Catal A:Gen, 2008, 339(1):36-44. doi: 10.1016/j.apcata.2008.01.005
    [14]
    BLEKEN F, SKISRAD W, BARBERA K, KUSTOVA M, BORDIGA S, BEATO P, LILLERUD K P, SVELLE S, OLSBYE U. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections:comparison of TNU-9, IM-5, ZSM-11 and ZSM-5[J]. Phys Chem Chem Phys, 2011, 13(7):2539-2549. doi: 10.1039/C0CP01982H
    [15]
    OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24):5810-5831. doi: 10.1002/anie.201103657
    [16]
    胡思, 巩雁军, 张卿, 张军亮, 张亚飞, 杨飞鹰, 窦涛.不同结构分子筛的甲醇制丙烯催化性能[J].化工学报, 2012, 63(12):3889-3896. doi: 10.3969/j.issn.0438-1157.2012.12.022

    HU Si, GONG Yan-jun, ZHANG qin, ZHANG Jun-liang, ZHANG Ya-fei, YANG Fei-ying, DOU Tao. Methanol to propylene reaction over zeolite catalysts with different topologies[J]. J Fuel Chem Technol, 2012, 63(12):3889-3896. doi: 10.3969/j.issn.0438-1157.2012.12.022
    [17]
    MAPNOUX P, ROGER P, CANFF C, FOUCHE V, GNEP N S, GUISNET M. New technique for the characterization of carboNceous compounds responsible for zeolite deactivation[J]. Stud Surf Sci Catal, 1987, 34:317-330. doi: 10.1016/S0167-2991(09)60370-0
    [18]
    ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013, 303:135-140. doi: 10.1016/j.jcat.2013.03.021
    [19]
    KHARE R, MILLAR D, BHAN A. A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI[J]. J Catal, 2015, 321:23-31. doi: 10.1016/j.jcat.2014.10.016
    [20]
    WANG P, HUANG L, LI J, DONG M, WANG J, TATSUMIC T, FAN W. Catalytic properties and deactivation behavior of H-MCM-22 in the conversion of methanol to hydrocarbons[J]. RSC Adv, 2015, 5(36):28794-28802. doi: 10.1039/C5RA00048C
    [21]
    ZHANG L, WANG H, LIU G, GAO K, WU J. Methanol-to-olefin conversion over H-MCM-22 catalyst[J]. J Mol Catal A:Chem, 2016, 411(1):311-316. http://cn.bing.com/academic/profile?id=2cf18d7c16fd7fc63f1058a625da4af9&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    耿蕊, 董梅, 王浩, 牛宪军, 樊卫斌, 王建国, 秦张峰.十元环分子筛在甲醇芳构化反应中催化性能的研究[J].燃料化学学报, 2014, 42(9):1119-1127. doi: 10.3969/j.issn.0253-2409.2014.09.013

    GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. J Fuel Chem Technol, 2014, 42(9):1119-1127. doi: 10.3969/j.issn.0253-2409.2014.09.013
    [23]
    BJORGEN M, AKYALCIN S, OLSBYE U, BENRD S, KOLBOE S, SVELLE S. Methanol to hydrocarbons over large cavity zeolites:Toward a unified description of catalyst deactivation and the reaction mechanism[J]. J Catal, 2010, 275(1):170-180. doi: 10.1016/j.jcat.2010.08.001
    [24]
    LEE K, LEE S, JUN Y, CHOI M. Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation[J]. J Catal, 2017, 347:222-230. doi: 10.1016/j.jcat.2017.01.018
    [25]
    WAN Z, LI G, WANG C, YANG H, ZHANG D. Relating coke formation and characteristics to deactivation of ZSM-5 Zeolite in methanol to gasoline conversion[J]. App Catal A:Gen, 2018, 549:141-151. doi: 10.1016/j.apcata.2017.09.035
    [26]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2008, 61(20):14095-14107. http://cn.bing.com/academic/profile?id=6654d102b84ac04b880882d407f8b391&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    IGLESIAS-JUEZ A, BEALE A M, MAAIJENK, WENG T, GLATZEL P, WECKHUYSEN B M. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions[J]. J Catal, 2010, 276(2):268-279. doi: 10.1016/j.jcat.2010.09.018
    [28]
    LI J, XIONG G, Feng Z, LIU Z, XIN Q, LI C. Coke formation during the methanol conversion to olefins in zeolites studied by UV Raman spectroscopy[J]. Microporous Mesoporous Mater, 2000, 39(1/2):275-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0214892602
    [29]
    LI K, CHANG Q, YIN J, ZHAO C, HUANG L, TAO Z, YUN Y, ZHANG C, XIANG H, YANG Y, LI Y. Deactivation of Pt/KL catalyst during n-heptane aromatization reaction[J]. J Catal, 2018, 361:193-203. doi: 10.1016/j.jcat.2018.03.001
    [30]
    王森, 陈艳艳, 卫智虹, 秦张峰, 李俊汾, 董梅, 樊卫斌, 王建国.分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展[J].燃料化学学报, 2015, 43(10):1202-1214. doi: 10.3969/j.issn.0253-2409.2015.10.008

    WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins(MTO)[J]. J Fuel Chem Technol, 2015, 43(10):1202-1214. doi: 10.3969/j.issn.0253-2409.2015.10.008
    [31]
    WANG S, CHEN Y, WEI Z, QIN Z, LIANG T, DONG M, LI J, FAN W, WANG J. Evolution of aromatic species in supercages and its effect on the conversion of methanol to olefins over H-MCM-22 Zeolite:A density functional theory study[J]. J Phys Chem C, 2016, 120(49):27964-27979. doi: 10.1021/acs.jpcc.6b08154
    [32]
    LI J, WEI Y, QI Y, TIAN P, LI B, HE Y, CHANG F, SUN X, LIU Z. Conversion of methanol over H-ZSM-22:The reaction mechanism and deactivation[J]. Catal Today, 2011, 164(1):288-292. doi: 10.1016/j.cattod.2010.10.095
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (99) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return