Volume 47 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
ZHANG Li-wei, ZHANG Huai-ke, CHEN Zhi-qiang, LIU Su-yao, REN Jie. Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1468-1475.
Citation: ZHANG Li-wei, ZHANG Huai-ke, CHEN Zhi-qiang, LIU Su-yao, REN Jie. Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1468-1475.

Effect of framework Al siting on catalytic performance in methanol to aromatics over ZSM-5 zeolites

Funds:

the National Natural Science Foundation of China 21902171

More Information
  • Corresponding author: LIU Su-yao, Tel: +86-010-60683824, E-mail: liusuyao@synfuelschina.com.cn; REN Jie, Tel: +86-010-69667855, E-mail: renjie@sxicc.ac.cn
  • Received Date: 2019-09-23
  • Rev Recd Date: 2019-10-13
  • Available Online: 2021-01-23
  • Publish Date: 2019-12-10
  • ZSM-5 zeolites with different framework Al (AlF) siting were hydrothermally synthesized by adding mineralizer, urea, or by changing the silicon source. The morphology, textural properties, AlF siting, and acidity of different ZSM-5 zeolites were characterized using SEM, XRD, BET, XRF, MAS NMR, NH3-TPD, and Py-IR. Furthermore, the conversion of methanol to aromatics (MTA) was used to investigate the catalytic performance of different catalysts.The results suggested that different ZSM-5 zeolites were highly crystalline with a uniform morphology, but there were large differences in AlF siting and acidity. The AlF in the ellipsoidal ZSM-5 sample was mainly distributed in straight or sinusoidal channels and displayed more acidic sites. AlF of bulk ZSM-5 was mainly located at the intersection of channels, and it showed the lowest amount of strong acid sites. The ellipsoidal ZSM-5 catalyst in which AlF was mainly located in straight or sinusoidal channels exhibited more acidic sites and higher stability and aromatic selectivity during the MTA reaction.
  • loading
  • [1]
    HOLLANDER M A D, WISSNK M, MAKKEE M. Gasoline conversion:Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J]. Appl Catal A:Gen, 2002, 223(1/2):85-102. http://cn.bing.com/academic/profile?id=468d9b40f3549da1246e4060b6216b29&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    YANG L Z, LIU Z Y, LIU Z, PENG W Y, LIU Y Q, LIU C G. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chin J Catal, 2017, 38(4):683-690. doi: 10.1016/S1872-2067(17)62791-8
    [3]
    HU H, ZHANG Q, CEN J. Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol[J]. Catal Lett, 2015, 145(2):715-722. doi: 10.1007/s10562-014-1458-3
    [4]
    SOHN J R, DECANIO S J, FRITZ P O. Acid catalysis by dealuminated zeolite Y. 2. The roles of aluminum[J]. J Phys Chem, 1986, 90/20(20):4847-4851. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=k1txISpY6JfiU22g8t1HQfex2CW4X35Rd/qyCufUqJI=
    [5]
    MACHT J, CARR R T, IGLESIA E. Consequences of acid strength for isomerization and elimination catalysis on solid acids[J]. J Am Chem Soc, 2009, 131(18):6554-6565. doi: 10.1021/ja900829x
    [6]
    DEDECEK J, BALGOV A, VENDUL A, PASHKOVA V. Synthesis of ZSM-5 zeolites with defined distribution of Al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J]. Chem Mater, 2012, 24(16):3231-3239. doi: 10.1021/cm301629a
    [7]
    PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J W, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. J Catal, 2017, 353:1-10. doi: 10.1016/j.jcat.2017.06.026
    [8]
    BILIGETU T, WANG Y, NISHITOBA T, YOKOI T. Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols[J]. Catal Today, 2018, 303:1-10. doi: 10.1016/j.cattod.2017.12.032
    [9]
    YOKOI T, MOCHIZUKI H, NAMB A, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119:15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [10]
    KIM J H, NAMBA S, YASHIMA T. Shape selectivity of ZSM-5 type zeolite for alkylation of ethylbenzene and ethanol[J]. Bull Chem Soc Jpn, 1988, 61:1051-1055. doi: 10.1246/bcsj.61.1051
    [11]
    LIANG T Y, CHEN J L, QIN Z F, LI J F, WANG P F, WANG S, WANG G F, DONG M, FAN W B, WANG J G. Conversion of methanol to olefins over HZSM5 zeolite:Reaction pathway is related to the framework aluminum siting[J]. ACS Catal, 2016, 6(11):7311-7325. doi: 10.1021/acscatal.6b01771
    [12]
    NA J D, LIU G Z, ZHOU T Y, DING G C, HU S L, WANG L. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3):267-275. doi: 10.1007/s10562-013-0963-0
    [13]
    GREGG S J, SING K S W. Adsirption, Surface Area and Porosity[M]. London:Academic Press, 1982, 154.
    [14]
    AGUADO J, SERRANO D P, ESCOLA J M, RODRIGUEZ J M. Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals[J]. Microporous Mesoporous Mater, 2004, 75(1):41-49. http://cn.bing.com/academic/profile?id=cbc586f5512d10772bbad06fa686ac15&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    GOBIN O C, REITMEIER S J, JENTYS A, LERCHER J A. Comparison of the transport of aromatic compounds in small and large MFI particles[J]. J Phys Chem C, 2009, 113(47):20435-20444. doi: 10.1021/jp907444c
    [16]
    WU G, WU W, WANG X, ZAN W, WANG W, LI C. Nanosized ZSM-5 zeolites:Seed-induced synthesis and the relation between the physicochemical properties and the catalytic performance in the alkylation of naphthalene[J]. Microporous Mesoporous Mater, 2013, 180(6):187-195. http://www.sciencedirect.com/science/article/pii/S1387181112006609
    [17]
    SKLENAK S, DĚEDEČCEK J, LI C. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations[J]. Phys Chem Chem Phys, 2009, 11(8):1237-1247. doi: 10.1039/B807755J
    [18]
    YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-State NMR technique and catalytic properties[J]. J Phys Chem C, 2015, 119(27):15303-15315. doi: 10.1021/acs.jpcc.5b03289
    [19]
    LIU S Y, REN J, ZHU S J, ZHANG H K, LV E J, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high ndodecane isomerization performance[J]. J Catal, 2015, 330:485-496. doi: 10.1016/j.jcat.2015.07.027
    [20]
    YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc, 2010, 132(23):8129-8136. doi: 10.1021/ja101882a
    [21]
    KUBELKOVA L, NOVAKOVA J. Reactivity of surface species on zeolites in methanol conversion[J]. J Catal, 1990, 124:441-450. doi: 10.1016/0021-9517(90)90191-L
    [22]
    WANG K, DONG M, LI J F, LIU P, ZHANG K, WANG J G, FAN W B. Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics[J]. Catal Sci Technol, 2017, 7:560-564. doi: 10.1039/C6CY02476A
    [23]
    BLASZKOWSKI S, SANTEN R. The mechanism of dimethyl ether formation from methanol catalyzed by zeolite protons[J]. J Am Chem Soc, 1996, 118(21):5152-5153. doi: 10.1021/ja954323k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (162) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return