Volume 46 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
ZHUANG Xiu-zheng, SONG Yan-pei, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.
Citation: ZHUANG Xiu-zheng, SONG Yan-pei, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.

Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals

Funds:

the National Key R & D Project 2016YFE0203300

the Guangdong Natural Science Foundation 2017B030308002

the Guangzhou Science and Technology Project 201803030006

More Information
  • Corresponding author: YIN Xiu-li, E-mail: xlyin@ms.giec.ac.cn
  • Received Date: 2018-08-06
  • Rev Recd Date: 2018-09-19
  • Available Online: 2021-01-23
  • Publish Date: 2018-12-10
  • Differences on organic/inorganic structures and fuel properties between sewage sludge-derived hydrochar and different-rank coals were investigated and compared with the help of FT-IR, XRF and XRD technologies. Meanwhile, the combustion behavior under various blending ratio and its synergistic effects was identified via TG and deviation analysis. The results demonstrates that the organic structures and combustion behaviors of hydrochar are similar to those of coals, which not only improves the combustion properties of sewage sludge, but also enhances the synergistic effects in co-combustion of hydrochar and coals. During the co-combustion process, light volatiles and (alkaline) alkaline-earth metals in hydrochar could accelerate the weight loss rate for coals, reaching 4.4%-16.1%, 1.9%-9.4% and 4.8%-12.1% for lignite, bitumite and anthracite, respectively. In general, the blends with 30% hydrochar and 70% lignite or 50% hydrochar and 50% lignite are better than other blends in terms of comprehensive combustion evolutions.
  • loading
  • [1]
    PARSHETTI G K, LIU Z G, JAIN A, SRINIVASAN M P, BALASUBRAMANIAN R. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111:201-210. doi: 10.1016/j.fuel.2013.04.052
    [2]
    LEE Y J, LEE D W, PARK J H, BAE J S, KIM J G, KIM J H, PARK S J, JEON C H, CHOI Y C. Two-in-one fuel combining sewage sludge and bioliquid[J]. ACS Sustainable Chem Eng, 2016, 4(6):3276-3284. doi: 10.1021/acssuschemeng.6b00314
    [3]
    WANG Z Q, HONG C, XING Y, LI Y F, FENG L H, JIA M M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal:With and without catalysts[J]. Waste Manage, 2018, 74:288-296. doi: 10.1016/j.wasman.2018.01.002
    [4]
    XIE C D, LIU J Y, XIE W M, KUO J H, LU X W, ZHANG X C, HE Y, SUN J, CHANG K L, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends[J]. Renewable Energy, 2018, 122:55-64. doi: 10.1016/j.renene.2018.01.093
    [5]
    张光义, 马大朝, 彭翠娜, 许光文.水热处理抗生素菌渣制备固体生物燃料[J].化工学报, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035

    ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. J Chem Ind Eng, 2013, 64(10):3741-3749. http://d.old.wanfangdata.com.cn/Periodical/hgxb201310035
    [6]
    庄修政, 黄艳琴, 阴秀丽, 吴创之.基于响应面法优化污泥燃料的水热制备工艺[J].新能源进展, 2017, (05):325-332. doi: 10.3969/j.issn.2095-560X.2017.05.001

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Optimization of hydrothermal process for solid fuel derived from sewage sludge by response surface methodology[J]. Adv New Renewable Energy, 2017, 5(5):325-332. doi: 10.3969/j.issn.2095-560X.2017.05.001
    [7]
    庄修政, 黄艳琴, 阴秀丽, 吴创之.污泥水热处理制备清洁燃料的研究进展[J].化工进展, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040

    ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018, 37(1):311-318. http://d.old.wanfangdata.com.cn/Periodical/hgjz201801040
    [8]
    ZHAO P T, SHEN Y F, GE S F, CHEN Z Q, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy, 2014, 131:345-367. doi: 10.1016/j.apenergy.2014.06.038
    [9]
    HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:Hydrochar fuel characteristics and combustion behavior[J]. Appl Energy, 2013, 111(11):257-266. http://www.sciencedirect.com/science/article/pii/S0306261913003887
    [10]
    HE C, WANG K, YANG Y, WANG J Y. Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals:Effects of subcritical water conversion and blending scenarios[J]. Energy Fuels, 2014, 28(9):6140-6150. doi: 10.1021/ef501386g
    [11]
    ZHUANG X, ZHAN H, HUANG Y, SONG Y, YIN X, WU C. Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC):Upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresour Technol, 2018, 267:17-29. doi: 10.1016/j.biortech.2018.07.002
    [12]
    OTERO M, GOMEZ X, GARCIA A I, MORAN A. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment[J]. Chemosphere, 2007, 69(11):1740-1750. doi: 10.1016/j.chemosphere.2007.05.077
    [13]
    LIU Z G, QUEK A, HOEKMAN S K, SRINIVASAN M P, BALASUBRAMANIAN R. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresour Technol, 2012, 123:646-652. doi: 10.1016/j.biortech.2012.06.063
    [14]
    LIN Y, LIAO Y, YU Z, FANG S, MA X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis[J]. Thermochim Acta, 2017, 653:71-78. doi: 10.1016/j.tca.2017.04.003
    [15]
    SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016, 169:135-145. doi: 10.1016/j.fuel.2015.12.006
    [16]
    CHEN W D, WANG F, KANHAR A H. Sludge acts as a catalyst for coal during the Co-combustion process investigated by thermogravimetric analysis[J]. Energies, 2017, 10(12).
    [17]
    CAO J P, LI L Y, MORISHITA K, XIAO X B, ZHAO X Y, WEI X Y, TAKARADA T. Nitrogen transformations during fast pyrolysis of sewage sludge[J]. Fuel, 2013, 104(2):1-6. http://www.sciencedirect.com/science/article/pii/S001623611000431X
    [18]
    ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017, 245:463-470. doi: 10.1016/j.biortech.2017.08.195
    [19]
    MAGDZIARZ A, DALAI A K, KOZINSKI J A. Chemical composition, character and reactivity of renewable fuel ashes[J]. Fuel, 2016, 176:135-145. doi: 10.1016/j.fuel.2016.02.069
    [20]
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025
    [21]
    BAYSAL M, YURUM A, YILDIZ B, YURUM Y. Structure of some western Anatolia coals investigated by FT-IR, Raman, C-13 solid state NMR spectroscopy and X-ray diffraction[J]. Int J Coal Geol, 2016, 163:166-176. doi: 10.1016/j.coal.2016.07.009
    [22]
    XIE C D, LIU J Y, ZHANG X C, XIE W M, SUN J, CHANG K L, KUO J H, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Appl Energy, 2018, 212:786-795. doi: 10.1016/j.apenergy.2017.12.084
    [23]
    MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste[J]. Bioresour Technol, 2010, 101(7):2477-2482. doi: 10.1016/j.biortech.2009.11.060
    [24]
    XIE W H, HUANG J L, LIU J Y, ZHAO Y J, CHANG K L, KUO J H, HE Y, SUN J, ZHENG L, XIE W M, SUN S Y, BUYUKADA M, EVRENDILEK F. Assessing thermal behaviors and kinetics of (co-) combustion of textile dyeing sludge and sugarcane bagasse[J]. Appl Therm Eng, 2018, 131:874-883. doi: 10.1016/j.applthermaleng.2017.11.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (169) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return