Volume 46 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 769-777.
Citation: WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 769-777.

Differences in molecular composition of soluble organic species in two Chinese sub-bituminous coals with different reducibility

Funds:

the National Natural Science Foundation of China 21206188

Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MKX201502

National Undergraduate Training Programs for Innovation of China University of Mining and Technology 201610290036

More Information
  • Corresponding author: ZHAO Yun-peng, Tel:+8651683885951, E-mail:yunpengzhao2009@163.com
  • Received Date: 2018-03-29
  • Rev Recd Date: 2018-06-22
  • Available Online: 2021-01-23
  • Publish Date: 2018-07-10
  • Naomaohu sub-bituminous (NS) with weak reducibility and Buliangou sub-bituminous (BS) with strong reducibility were extracted in isometric carbon disulfide/acetone mixed solvent to get extracts and extraction residues (ERs). The ERs were thermal dissolved in cyclohexane and methanol to get soluble portions (SPs). The yields of the extracts from NS (ENS) and BS (EBS) are 10.6% and 8.0%, respectively, and the total yields of the SPs from NS and BS at 300℃ are 36.3% and 11.5%, respectively, indicating the solubility of the organic species in NS are better than that in BS. Arenes are the dominated compounds both in ENS and EBS. The relative contents of aliphatic hydrocarbons and phenols in the SPs of NS are obvious higher than those of BS. The molecular weight distribution of the compounds in ENS is wider than that in EBS, while the molecular weight distribution of the compounds in the SPs from NS is narrower than that from BS.
  • 本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • loading
  • [1]
    LI X, ASHIDA, R. MIURA K. Preparation of high-grade carbonaceous materials having similar chemical and physical properties from various low-rank coals by degradative solvent extraction[J]. Energy Fuels, 2012, 26(11):6897-6904. doi: 10.1021/ef301364p
    [2]
    SHUI H F, XU H Y, ZHOU Y, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, XU C B. Study on hydro-liquefaction kinetics of thermal dissolution soluble fraction from Shenfu sub-bituminous coal[J]. Fuel, 2017, 200:576-582. doi: 10.1016/j.fuel.2017.03.048
    [3]
    JONATHAN P M, CAROLINE B C, PAUL P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015, 29(3):1279-1294. doi: 10.1021/ef502548x
    [4]
    LI X, DEDY E P, RYUICHI A, KOUICHI M. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015, 29:3127-3133. doi: 10.1021/ef502574b
    [5]
    SÖNMEZ Ö, GÖZMEN B, CEVIK T, GIRAY E S. Optimization of solvent extraction process of some turkish coals using response surface methodology and production of ash-free coal[J]. Asia-Pac J Chem Eng, 2016, 11(6):1001-1011. doi: 10.1002/apj.v11.6
    [6]
    GRIFFITH J M, CLIFFORD C E B, RUDNICK L R, SCHOBERT H H. Solvent extraction of bituminous coals using light cycle oil:Characterization of diaromatic products in liquids[J]. Energy Fuels, 2009, 23(9):4553-4561. doi: 10.1021/ef9006092
    [7]
    SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006, 85:1798-1802. doi: 10.1016/j.fuel.2006.02.005
    [8]
    SÖNMEZ Ö, GIRAYE S. Producing ashless coal extracts by microwave irradiation[J]. Fuel, 2011, 90(6):2125-2131. doi: 10.1016/j.fuel.2011.02.006
    [9]
    JANUSZ P, LUKASZ S. Effects of pressure on hydrogen transfer from tetralin to coal macerals[J]. Energy Fuels, 2005, 19:348-352. doi: 10.1021/ef040053s
    [10]
    ZHAO Y P, XIAO J, DING M, EDDINGS E G, WEI XY, FAN X, ZONG Z M. Sequential extraction and thermal dissolution of Baiyinhua lignite in isometric CS2/acetone and toluene/methanol binary solvents[J]. Energy Fuels, 2016, 30(1):47-53. doi: 10.1021/acs.energyfuels.5b01775
    [11]
    DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol, 2015, 135:20-24. doi: 10.1016/j.fuproc.2014.09.031
    [12]
    LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011, 25(6):2741-2745. doi: 10.1021/ef101734f
    [13]
    ZHAO Y P, HU H Q, JIN L J, WU B, ZHU S W. Pyrolysis behavior of weakly reductive coals from northwest China[J]. Energy Fuels, 2009, 23:870-875. doi: 10.1021/ef800831y
    [14]
    WU B HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub-and supercritical water[J]. Energy Fuels, 2008, 22:3944-3948. doi: 10.1021/ef8002872
    [15]
    CHANG H Z, WANG C G, ZENG F G, LI J, LI W Y, XIE K C. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(4):389-394. http://cn.bing.com/academic/profile?id=7459d7a0138a9e0bb1b4b0e0309945f6&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    ZOU X W, QIN T F, HUANG L H, ZHANG X L, YANG Z, WANG Y. Mechanisms and main regularities of biomass liquefaction with alcoholic solvents[J]. Energy Fuels, 2009, 23(10):5213-5218. doi: 10.1021/ef900590b
    [17]
    TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FT-IR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol, 2016, 154:210-218. doi: 10.1016/j.fuproc.2016.08.035
    [18]
    CANEL M MISIRLIOGLU Z, CANEL E, BOZKURT P A. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites[J]. Fuel, 2016, 186:504-517. doi: 10.1016/j.fuel.2016.08.079
    [19]
    XIE X, ZHAO Y, QIU P H, LIN D, QIAN J, HOU H M, PEI J T. Investigation of the relationship between infrared structured and pyrolysis reactivity of coals with different ranks[J]. Fuel, 2018, 216:521-530. doi: 10.1016/j.fuel.2017.12.049
    [20]
    SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol, 2017, 156:454-460. doi: 10.1016/j.fuproc.2016.10.008
    [21]
    MICHAEL S, THOMAS A. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel, 1983, 62:1321-1326. doi: 10.1016/S0016-2361(83)80017-9
    [22]
    VACLAVIK L, CAJKA T, HRBEK V, HAJSLOVA J. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment[J]. Anal Chim Acta, 2009, 645(1/2):56-63. http://cn.bing.com/academic/profile?id=f113cd3925fc16849e5b49d712cb4d53&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    WANG Y, LI C M, HUANG L, LIU L, GUO Y L, MA L, LIU S Y. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry[J]. Anal Chim Acta, 2014, 845:70-76. doi: 10.1016/j.aca.2014.06.014
    [24]
    CHERNETSOVA E S, BOCHKOV P O, OVCHAROV M V, ZHOKHOV S S, ABRAMOVICH R A. DART mass spectrometry:A fast screening of solid pharmaceuticals for the presence of an active ingredient, as an alternative for IR spectroscopy[J]. Drug Test Anal, 2010, 2(5/6):292-294. http://cn.bing.com/academic/profile?id=1fbb02b5d1b7c3b6ef7fb3d736765186&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    CRAWFORD E, MUSSELMAN B. Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an exactive benchtop orbitrap mass spectrometer[J]. Anal Bioanal Chem, 2012, 403(10):2807-2812. doi: 10.1007/s00216-012-5853-6
    [26]
    FAN X, WANG C F, YOU C Y, WEI X Y, CHEN L, CAO J P, ZHAO Y P, ZHAO W, WANG Y G, LU J L. Characterization of a Chinese lignite and the corresponding derivatives using direct analysis in real time quadrupole time-of-flight mass spectrometry[J]. RSC Adv, 2016, 6:105780-105785. doi: 10.1039/C6RA23899H
    [27]
    WANG C F, FAN X, ZHANG F, WANG S Z, ZHAO Y P, ZHAO X Y, ZHAO W, ZHU T G, LU J L, WEI X Y. Characterization of humic acids extracted from a lignite and interpretation for the mass spectra[J]. RSC Adv, 2017, 7:20677-20684. doi: 10.1039/C7RA01497J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (78) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return