Volume 48 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 338-348.
Citation: LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 338-348.

Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis

Funds:

The project was supported by the National Natural Science Foundation of China 21673270

Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880

Ph. D. Research Funding of Jinzhong University 2019

  • Received Date: 2020-01-13
  • Rev Recd Date: 2020-02-15
  • Available Online: 2021-01-23
  • Publish Date: 2020-03-10
  • Cu-Al spinels were synthesized by a solid phase method using Cu(OH)2 and pseudo-boehmite as the raw materials. The effects of synthesis temperature, synthesis time and Cu/Al molar ratio on the formation and properties of Cu-Al spinels were fully investigated by the thermogravimetry(TG/DTG), X-ray diffraction(XRD), H2 temperature programmed reduction(H2-TPR). The non-isothermal kinetics of Cu-Al spinel formation process were analyzed using Coats-Redfern method and two diffusion-controlled kinetic models. Characterization results showed that the Cu-Al surface spinels with unsaturated coordination formed easily at the temperature as low as 400℃, and the content of these surface spinel decreased sharply with the synthesis temperature rising. The hardly-reducible spinel Cu2+ species and easily-reducible spinel Cu2+ species were identified at the synthesis temperature of 700 and 800℃, respectively. The spinel content increased gradually with the synthesis temperature increasing, leading to the formation of Al-rich spinel solid solutions with different Cu/Al molar ratios. At a higher temperature of 1200℃, however, the formation of stoichiometric CuAl2O4 spinel was observed. Hence, the spinel reducibility varied dramatically with the synthesis temperature as illustrated by the drastic change of the molar ratio of hardly-reducible spinel Cu2+ species and easily-reducible spinel Cu2+ species. An appropriate excess of Al3+(Cu/Al=1:3) could result in the formation of spinel solid solution with more hardly-reducible spinel Cu2+ species, while an excess of Cu2+ would lead to the formation of delafossite-type CuAlO2. Both samples owned low reducibility as compared to the stochiometric CuAl2O4 spinel. Besides, a longer synthesis time would favor the spinel formation as well but to a limited extent. Non-isothermal kinetics analysis showed that the formation process of Cu-Al spinel owned three kinetic regions in terms of synthesis temperature, namely 700-850, 850-950 and 950-1200℃, and the apparent activation energies were determined to be 85.2, 304.4 and 38.1 kJ/mol, respectively. The diffusion of reactants via product layer could be considered as an one-dimensional diffusion below 950℃, whereas it was more likely to be a three-dimensional diffusion above 950℃, indicating that the product layer became much thicker.
  • loading
  • [1]
    熊文慧, 张文超, 俞春培, 沈瑞琪, 程佳, 叶家海, 秦志春.多孔纳米CoFe2O4的制备及其对高氯酸铵的热分解催化性能[J].物理化学学报, 2016, 32(8):2093-2100. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201608031

    XIONG Wen-hui, ZHANG Wen-chao, YU Chun-pei, SHEN Rui-qi, CHENG Jia, YE Jia-hai, QIN Zhi-chun. Preparation of nanoporous CoFe2O4 and its catalytic performance during the thermal decomposition of ammonium perchlorate[J]. Acta Phys Chim Sin, 2016, 32(8):2093-2100. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201608031
    [2]
    MAITI S, DAS D, PAL K, LORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019, 570:73-83. doi: 10.1016/j.apcata.2018.11.011
    [3]
    HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 45(1):477-489. http://cn.bing.com/academic/profile?id=1fc1c742bbf31b1f48746c649d745a2f&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018, 10(24):5698-5706. doi: 10.1002/cctc.201801472
    [5]
    WU J C, LI Y Z, YANG Y, ZHANG Q, YUN L, WU S W, ZHOU C Y, JIANG Z K, ZHAO X J. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO[J]. J Mater Chem A, 2019, 7(12):7202-7212. doi: 10.1039/C8TA11528A
    [6]
    杜诚, 高小惠, 陈卫.铜基非贵金属氧还原电催化剂的研究进展[J].催化学报, 2016, 37(7):1049-1061. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201607010

    DU Cheng, GAO Xiao-hui, CHEN Wei. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction[J]. Chin J Catal, 2016, 37(7):1049-1061. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201607010
    [7]
    LIU Q, ZHANG X X, ZHANG B, LUO Y L, CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale, 2018, 10(30):14386-14389. doi: 10.1039/C8NR04524K
    [8]
    崔柏, 林红, 李建保, 赵晓冲, 李文迪. ZnCo2O4纳米粒子的可见光催化性能[J].物理化学学报, 2011, 27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937

    CUI Bai, LIN Hong, LI Jian-bao, ZHAO Xiao-chong, LI Wen-di. Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles[J]. Acta Phys Chim Sin, 2011, 27(10):2411-2415. doi: 10.3866/PKU.WHXB20110937
    [9]
    CHANDRASEKARAN S, BOWEN C, ZHANG P X, LI Z L, YUAN Q H, REN X Z, DENG L B. Spinel photocatalysts for environmental remediation, hydrogen generation, CO2 reduction and photoelectrochemical water splitting[J]. J Mater Chem A, 2018, 6(24):11078-11104. doi: 10.1039/C8TA03669A
    [10]
    TATARCHUK T, AL-NAJAR, B, BOUOUDINA M, AHMED M A A. Catalytic and Photocatalytic Properties of Oxide Spinels:In Handbook of Ecomaterials[M]. 1nd ed. Cham:Springer International Publishing, 2018.
    [11]
    庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J].燃料化学学报, 2018, 46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018, 46(10):1210-1217. doi: 10.3969/j.issn.0253-2409.2018.10.008
    [12]
    XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed Eng, 2014, 53(44):11886-11889. doi: 10.1002/anie.201405213
    [13]
    LI G J, GU C T, ZHU W B, WANG X F, YUAN X F, CUI Z J, WANG H L, GAO Z X. Hydrogen production from methanol decomposition using Cu-Al spinel catalysts[J]. J Clean Prod, 2018, 183:415-423. doi: 10.1016/j.jclepro.2018.02.088
    [14]
    YAHIRO H, NAKAYA K, YAMAMOTO T, SAIKI K, YAMAURA H. Effect of calcination temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction[J]. Catal Commun, 2006, 7(4):228-231. doi: 10.1016/j.catcom.2005.11.004
    [15]
    FAUNGNAWAKIJ K, KIKUCHI R, SHIMODA N, FUKUNAGA T, EGUCHI K. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether[J]. Angew Chem Int Ed Eng, 2008, 47(48):9314-9317. doi: 10.1002/anie.200802809
    [16]
    SHIMIZU K, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000, 2(10):2435-2439. doi: 10.1039/b000943l
    [17]
    MATSUKATA M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988, 17(5):761-764. doi: 10.1246/cl.1988.761
    [18]
    KIM T W, SONG M W, KOH H L, KIM K L. Surface properties and reactivity of Cu/γ-Al2O3 catalysts for NO reduction by C3H6:Influences of calcination temperatures and additives[J]. Appl Catal A:Gen, 2001, 210(1/2):35-44. https://www.sciencedirect.com/science/article/abs/pii/S0926860X00008012
    [19]
    李光俊, 郗宏娟, 张素红, 谷传涛, 庆绍军, 侯晓宁, 高志贤.尖晶石CuM2O4(M=A1、Fe、Cr)催化甲醇重整反应的特性[J].燃料化学学报, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009

    LI Guang-jun, XI Hong-juan, ZHANG Su-hong, GU Chuan-tao, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Catalytic characteristics of spinel CuM2O4(M=A1、Fe、Cr) for the stream reforming of methanol[J]. J Fuel Chem Technol, 2012, 40(12):1466-1471. doi: 10.3969/j.issn.0253-2409.2012.12.009
    [20]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017, 7(21):5069-5078. doi: 10.1039/C7CY01236E
    [21]
    LIU Y J, QINGS J, HOU X N, FENG G, ZHANG R B, WANG X, WANG S M, GAO Z X, XIANG H W. Synthesis and structural characterization of CuAl2O4 spinel with an unusual cation distribution[J]. J Mater Appl, 2018, 7(2):82-89.
    [22]
    VLAEV T, MARKOVSKA I G, LYUBCHEV L A. Non-isothermal kinetics of pyrolysis of rice husk[J]. Thermochim Acta, 2003, 406(1/2):1-7. http://cn.bing.com/academic/profile?id=70a0ab9589ac81506e546697437180e5&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    ÓRFĀO J J M, MARTINS F G. Kinetic analysis of thermogravimetric data obtained under linear temperature programming-a method based on calculations of the temperature integral by interpolation[J]. Thermochim Acta, 2002, 390(1/2):195-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c6ffa69d5c744ca227b5737102afd294
    [24]
    STROHMEIER B R, LEYDEN D E, FIELD R S, HERCULES D M. Surface spectroscopic characterization of Cu/Al2O3 catalysts[J]. J Catal, 1985, 94(2):514-530. doi: 10.1016/0021-9517(85)90216-7
    [25]
    FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973, 35(8):3009-3014. doi: 10.1016/0022-1902(73)80531-7
    [26]
    SEO J G, YOUN M H, CHUNG J S, SONG I K. Effect of calcination temperature of mesoporous nickel-alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas(LNG)[J]. J Ind Eng Chem, 2010, 16(5):795-799. doi: 10.1016/j.jiec.2010.05.010
    [27]
    张玉红, 熊国兴, 盛世善, 刘盛林, 杨维慎. NiO/γ-Al2O3催化剂中NiO与γ-Al2O3间的相互作用[J].物理化学学报, 1999, 15(8):735-741. doi: 10.3866/PKU.WHXB19990813

    ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999, 15(8):735-741. doi: 10.3866/PKU.WHXB19990813
    [28]
    GHARAGOZLOU M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method[J]. J Alloys Compd, 2009, 486(1/2):660-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d70b46c990cb4e8277798a05afc5cbfb
    [29]
    CABO M, PELLICER E, ROSSINYOL E, CASTELL O, SURIÑACH S, BARÓ M D. Mesoporous NiCo2O4 spinel:influence of calcination temperature over phase purity and thermal stability[J]. Cryst Growth Des, 2009, 9(11):4814-4821. doi: 10.1021/cg900648q
    [30]
    熊礼龙, 徐友龙, 张成, 陶韬. Al3+对尖晶石型LiMn2O4正极材料的表面掺杂包覆改性[J].物理化学学报, 2012, 28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092

    XIONG L L, XU Y L, ZHANG C, TAO T. Doping-coating surface modification of spinel LiMn2O4 cathode material with Al3+ for lithium-ion batteries[J]. Acta Phys Chim Sin, 2012, 28(5):1177-1182. doi: 10.3866/PKU.WHXB201203092
    [31]
    QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018, 54(86):12242-12245. doi: 10.1039/C8CC06600K
    [32]
    JAMES T, PADMANABHAN M, WARRIER K G K, SUGUNAN S. CuAl2O4 formation and its effect on α-Al2O3 phase evolution on calcination of metal ion doped boehmite xerogels[J]. Mater Chem Phys, 2007, 103(2/3):248-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a03992c064a870c2eeeb25a194220fe9
    [33]
    KHAWAM A, FLANAGAN D R. Solid-state kinetic models:Basics and mathematical fundamentals[J]. J Phys Chem B, 2006, 110(35):17315-17328. doi: 10.1021/jp062746a
    [34]
    CANIGLIA S, BARNA G L. Handbook of Industrial Refractories Technology: Pprinciples, Types, Properties and Applications[M]. William Andrew, 1992.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (279) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return