Volume 48 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
DU Jun-tao, ZHANG Da-kui, ZHANG Min-xin, JIA Hui-na, NIE Yi, SUN Yi-kai, DENG Wen-an, LI Chuan. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 674-682.
Citation: DU Jun-tao, ZHANG Da-kui, ZHANG Min-xin, JIA Hui-na, NIE Yi, SUN Yi-kai, DENG Wen-an, LI Chuan. Structure characteristics and association behavior of coal and petroleum C7-asphaltenes[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 674-682.

Structure characteristics and association behavior of coal and petroleum C7-asphaltenes

Funds:

the National Natural Science Foundation of China 21908206

More Information
  • Corresponding author: NIE Yi.E-mail: ynie@ipe.ac.cn
  • Received Date: 2020-06-01
  • Rev Recd Date: 2020-06-05
  • Available Online: 2021-01-23
  • Publish Date: 2020-06-10
  • The structural characteristics and differences of coal tar and petroleum C7-asphaltenes were studied, such as chemical composition, functional groups and molecular structure, using nuclear magnetic resonance (NMR), small angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), improved B-L method and other methods. Furthermore, the association behavior and aggregation size of two different types of asphaltenes as well as the hydrogen bonds and acidic-basic interaction were analyzed by asphaltenes solubility parameters in polar solvents. The experiment results showed that the coal tar asphaltenes (CT-asp) was mainly composed of less aromatic rings with more short alkyl branched chains and possessed a high aromaticity degree. The higher content oxygen heteroatoms of CT-asp were mostly presented as aromatic ether bonds and phenolic hydroxyl groups. The aromatic nucleus size and the average relative molecular weight of petroleum asphaltenes (M-asp) were larger than that of CT-asp. The M-asp consisted primarily of more aromatic rings with more long alkyl branched chains and possessed a low aromaticity degree. The association and aggregation degree between CT-asp and M-asp was associated with the amount of substance ratio (nCT-asp/nM-asp) and their molecular structure characteristics. The association force of two types mainly was the hydrogen bonds and the acidic-basic interaction from heteroatomic functional groups.
  • loading
  • [1]
    KAN T, SUN X, WANG H, LI C, MUHAMMAD U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels, 2012, 26(6):3604-3611. doi: 10.1021/ef3004398
    [2]
    张倩玉, 许志明, 赵锁奇.低温煤焦油常渣C5沥青质的分离与表征[J].燃料化学学报, 2016, 44(11):1318-1325. doi: 10.3969/j.issn.0253-2409.2016.11.006

    ZHANG Qian-yu, XU Zhi-ming, ZHAO Suo-qi. Separation and characterization of C5-asphaltene from low temperature coal tar[J]. J Fuel Chem Technol, 2016, 44(11):1318-1325. doi: 10.3969/j.issn.0253-2409.2016.11.006
    [3]
    ANGELES M J, LEYVA C, ANCHEYTA J, RAMÍREZ S. A review of experimental procedures for heavy oil hydrocracking with dispersed catalyst[J]. Catal Today, 2014, 220-222, 274-294. https://www.sciencedirect.com/science/article/abs/pii/S0920586113003908
    [4]
    LI C, DU J, YANG T, DENG W. Exploratory investigation on the slurry-phase hydrocracking reaction behavior of coal tar and petroleum-based heavy oil mixed raw material[J]. Energy Fuels, 2019, 33(9):8471-8482. doi: 10.1021/acs.energyfuels.9b02031
    [5]
    盛强, 王刚, 金楠, 张淇源, 高成地, 高金森.石油沥青质的微观结构分析和轻质化[J].化工进展, 2019, 38(3):1147-1159. http://d.old.wanfangdata.com.cn/Periodical/hgjz201903001

    SHENG Qiang, WANG Gang, JIN Nan, ZHANG Qi-yuan, GAO Cheng-di, GAO Jin-sen. Petroleum asphaltene micro-structure analysis and lightening[J]. Chem Ind Eng Prog, 2019, 38(3):1147-1159. http://d.old.wanfangdata.com.cn/Periodical/hgjz201903001
    [6]
    张文, 龙军, 任强, 蔡新恒.沥青质分子聚集行为研究进展[J].化工进展, 2019, 38(5):2158-2163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201905011

    ZHANG Wen, LONG Jun, REN Qiang, CAI Xin-heng. Research progress on aggregation behavior of asphaltene[J]. Chem Ind Eng Prog, 2019, 38(5):2158-2163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201905011
    [7]
    隆建, 沈本贤, 赵基钢, 凌昊, 卢俊财.减压渣油掺炼煤焦油改善常压溶剂脱沥青过程的机理[J].石油学报(石油加工), 2012, 28(1):69-75. doi: 10.3969/j.issn.1001-8719.2012.01.013

    LONG Jian, SHEN Ben-xian, ZHAO Ji-gang, LING Hao, LU Jun-cai. Mechanism of improving atmospheric solvent deasphalting process by vacuum residue blending with coal tar[J]. Acta Pet Sin(Pet Process Sect):2012, 28(1):69-75. doi: 10.3969/j.issn.1001-8719.2012.01.013
    [8]
    孟兆会, 杨圣斌, 杨涛, 郭蓉.减压渣油掺炼煤焦油相容性及加氢处理研究[J].石油炼制与化工, 2014, 45(5):25-28. doi: 10.3969/j.issn.1005-2399.2014.05.005

    MENG Zhao-hui, YANG Sheng-bin, YANG Tao, GUO Rong. Study on stability of vacuum residue blending coal tar and hydrocracking of mixture[J]. Chin Pet Process Petrochem Technol, 2014, 45(5):25-28. doi: 10.3969/j.issn.1005-2399.2014.05.005
    [9]
    胡建宏, 程相林, 李国宁, 武建军, 汲伟, 王永刚, 王柏川.煤沥青可溶组分在甲苯中缔合行为的研究[J].燃料化学学报, 2014, 42(7):774-778. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18443.shtml

    HU Jian-hong, CHENG Xiang-lin, LI Guo-ning, WU Jian-jun, JI Wei, WANG Yong-gang, WANG Bai-chuan. Association behavior of coal tar pitch soluble components in toluene[J]. J Fuel Chem Technol, 2014, 42(7):774-778. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18443.shtml
    [10]
    YUDIN I K, NIKOLAENKO G L, GORODETSKII E E, KOSOV V I, MELIKYAN V R, MARKHASHOV E L, FROT D, BRIOLANT Y. Mechanisms of asphaltene aggregation in toluene-heptane mixtures[J]. J Pet Sci Eng, 1998, 20(3/4):297-301. https://www.sciencedirect.com/science/article/pii/S0920410598000333
    [11]
    HAJI-AKBARI N, TEERAPHAPKUL P, FOGLER H S. Effect of asphaltene concentration on the aggregation and precipitation tendency of asphaltenes[J]. Energy Fuels, 2014, 28(2):909-919. doi: 10.1021/ef4021125
    [12]
    ANISIMOV M A, GANEEVA Y M, GORODETSKII E E, DESHABO V A, KOSOV V I, KURYAKOV V N, YUDIN D I, YUDIN I K. Effects of resins on aggregation and stability of asphaltenes[J]. Energy Fuels, 2014, 28(10):6200-6209. doi: 10.1021/ef501145a
    [13]
    KRAIWATTANAWONG K, FOGLER H S, GHARFEH S G, SINGH P, THOMASON W H, CHAVADEJ S. Effect of asphaltene dispersants on aggregate size distribution and growth[J]. Energy Fuels, 2009, 23(3):1575-1582. doi: 10.1021/ef800706c
    [14]
    GRAY M R, TYKWINSKI R R, STRYKER J M, TAN X. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy Fuels, 2011, 25(7):3125-3134. doi: 10.1021/ef200654p
    [15]
    GABRIENKO A A, MARTYANOV O N, KAZARIAN S G. Effect of temperature and composition on the stability of crude oil blends studied with chemical imaging[J]. Energy Fuels, 2015, 29(11):7114-7123. doi: 10.1021/acs.energyfuels.5b01880
    [16]
    AGRAWALA M, YARRANTON H W. An asphaltene association model analogous to linear polymerization[J]. Ind Eng Chem Res, 2001, 40(21):4664-4672. doi: 10.1021/ie0103963
    [17]
    RAKOTONDRADANY F, FENNIRI H, RAHIMI P, GAWRYS K L, KILPATRICK P K, GRAY M R. Hexabenzocoronene model compounds for asphaltene fractions:Synthesis & characterization[J]. Energy Fuels, 2006, 20(6):2439-2447. doi: 10.1021/ef060130e
    [18]
    LI P, ZONG Z, LI Z, WANG Y, LIU F, WEI X. Characterization of basic heteroatom-containing organic compounds in liquefaction residue from Shenmu-Fugu subbituminous coal by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2015, 132:91-98. doi: 10.1016/j.fuproc.2014.12.026
    [19]
    DU J, DENG W, LI C, ZHANG Z, YANG T, GUO R. Reactivity and structure changes of coal tar asphaltene during slurry-phase hydrocracking[J]. Energy Fuels, 2017, 31(2):1858-1865. doi: 10.1021/acs.energyfuels.6b02992
    [20]
    XIONG G, LI Y, JIN L, HU H. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. J Anal Appl Pyroysisl, 2015, 115:262-267. doi: 10.1016/j.jaap.2015.08.002
    [21]
    FERGOUG T, BOUHADDA Y. Determination of Hassi Messaoud asphaltene aromatic structure from 1H & 13C NMR analysis[J]. Fuel, 2014, 115:521-526. doi: 10.1016/j.fuel.2013.07.055
    [22]
    DUTTA MAJUMDAR R, BAKE K D, RATNA Y, POMERANTZ A E, MULLINS O C, GERKEN M, HAZENDONK P. Single-core PAHs in petroleum-and coal-derived asphaltenes:Size and distribution from solid-state NMR spectroscopy and optical absorption measurements[J]. Energy Fuels, 2016, 30(9):6892-6906. doi: 10.1021/acs.energyfuels.5b02815
    [23]
    ALHUMAIDAN F S, HAUSER A, RANA M S, LABABIDI H M S, BEHBEHANI M. Changes in asphaltene structure during thermal cracking of residual oils:XRD study[J]. Fuel, 2015, 150:558-564. doi: 10.1016/j.fuel.2015.02.076
    [24]
    SCHNEIDER M H, ANDREWS A B, MITRA-KIRTLEY S, MULLINS O C. Asphaltene molecular size by fluorescence correlation spectroscopy[J]. Energy Fuels, 2007, 21(5):2875-2882. doi: 10.1021/ef700216r
    [25]
    JIN N, WANG G, HAN S, MENG Y, XU C, GAO J. Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy Fuels, 2016, 30(4):2594-2603. doi: 10.1021/acs.energyfuels.5b02765
    [26]
    SUN Z, LI D, MA H, TIAN P, LI X, LI W, ZHU Y. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol, 2015, 138:413-418. doi: 10.1016/j.fuproc.2015.05.008
    [27]
    XIA W, YANG J. Reverse flotation of Taixi oxidized coal[J]. Energy Fuels, 2013, 27(12):7324-7329. doi: 10.1021/ef4017224
    [28]
    EYSSAUTIER J, LEVITZ P, ESPINAT D, JESTIN J, GUMMEL J, GRILLO I, BARRE L. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. J Phys Chem B, 2011, 115(21):6827-6837. doi: 10.1021/jp111468d
    [29]
    张庆, 邓文安, 李传, 吴乐乐.稠油沥青质的基本化学组成结构与缔合性研究[J].石油炼制与化工, 2014, 45(6):20-25. doi: 10.3969/j.issn.1005-2399.2014.06.007

    ZHANG Qing, DENG WEN-an, LI Chuan, WU Le-le. Study on basic chemical structure and association of asphaltene in heavy oil[J]. Chin Pet Process Petrochem Technol, 2014, 45(6):20-25. doi: 10.3969/j.issn.1005-2399.2014.06.007
    [30]
    JUYAL P, MERINO-GARCIA D, ANDERSEN S I. Effect on molecular interactions of chemical alteration of petroleum asphaltenes[J]. Energy Fuels, 2005, 19(4):1272-1281. doi: 10.1021/ef050012b
    [31]
    LIU X, HIRAJIMA T, NONAKA M, SASAKI K. Investigation of the changes in hydrogen bonds during low-temperature pyrolysis of lignite by diffuse reflectance FT-IR combined with forms of water[J]. Ind Eng Chem Res, 2015, 54(36):8971-8978. doi: 10.1021/acs.iecr.5b02474
    [32]
    张龙力, 王春岚, 赵元生, 杨国华, 杨朝合.塔河常压渣油沥青质含硫官能团形态与其性质的关系研究[J].燃料化学学报, 2012, 40(9):1081-1085. doi: 10.3969/j.issn.0253-2409.2012.09.009

    ZHANG Long-li, WANG Chun-lan, ZHAO Yuan-sheng, YANG Guo-hua, YANG Chao-he. Study on the relationship between sulfur functionalities and the characteristics of THAR asphaltene[J]. J Fuel Chem Technol, 2012, 40(9):1081-1085. doi: 10.3969/j.issn.0253-2409.2012.09.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (194) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return