Volume 44 Issue 3
Mar.  2016
Turn off MathJax
Article Contents
ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 273-278.
Citation: ZHANG Ping-an, YUAN Jing, YU Dun-xi, LUO Guang-qian, YAO Hong. Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 273-278.

Influence of different distributions of Ca-mineral in coal on trimodal particulate matter formation during combustion

Funds:

The project was supported by the Science and technology support program of Hubei Province 2014BCB040

  • Received Date: 2015-10-15
  • Rev Recd Date: 2016-01-06
  • Available Online: 2021-01-23
  • Publish Date: 2016-03-30
  • Calcium acetate was added into a bituminous coal through physically blending and impregnation to obtain the ble-Ca coal rich in excluded Ca-mineral and imp-Ca coal rich in included Ca-mineral, respectively. The raw coal, ble-Ca coal and imp-Ca coal were burned in a drop tube furnace at 1300℃. The generated particulate matters (PMs) were collected and analyzed to study the influence of different distributions of Ca-mineral in coal on trimodal PM formation during combustion. The results showed that for the three coals, PMs with the ultrafine mode, central mode and coarse mode were all in the size range of < 0.2μm, 0.2-2μm and >2μm, respectively. The included and excluded Ca-minerals can both promote the formation of ultrafine mode PM, and the excluded one had more significant effect. The included Ca-mineral can restrain, while the excluded one can promote the formation of central mode PM. The included Ca-mineral can promote the formation of coarse mode PM, while the excluded one did not have obvious effect.
  • loading
  • [1]
    YAO Q, LI S Q, XU H W, ZHUO J K, SONG Q. Studies on formation and control of combustion particulate matter in China: A review [J]. Energy, 2009, 34(9): 1296-1309. doi: 10.1016/j.energy.2009.03.013
    [2]
    LINAK W P, MILLER C A, SEAMES W S, WENDT J O L, ISHINOMORI T, ENDO Y, MIYAMAE S. On trimodal particle size distributions in fly ash from pulverized-coal combustion[J]. Proc Combust Inst, 2002, 29(1): 441-447. doi: 10.1016/S1540-7489(02)80058-X
    [3]
    SEAMES W S. An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion[J]. Fuel Process Technol, 2003, 81(2): 109-125. doi: 10.1016/S0378-3820(03)00006-7
    [4]
    YU D X, XU M H, YAO H, SUI J C, LIU X W, YU Y, CAO Q. Use of elemental size distributions in identifying particle formation modes[J]. Proc Combust Inst, 2007, 31(6): 1921-1928. https://www.researchgate.net/publication/223232052_Use_of_elemental_size_distributions_in_identifying_particle_formation_modes
    [5]
    QUANN R J. Ash vaporization under simulated pulverized coal combustion conditions[D]. Cambridge: Massachusetts Institute of Technology, 1982.
    [6]
    YU D X, XU M H, YAO H, LIU X W, ZHOU K, LI L, WEN C. Mechanisms of the central mode particle formation during pulverized coal combustion [J]. Proc Combust Inst, 2009, 32(1): 2075-2082. https://www.researchgate.net/publication/245224403_Mechanisms_of_the_central_mode_particle_formation_during_pulverized_coal_combustion
    [7]
    KANG S G. Fundamental studies of mineral matter transformation during pulverized coal combustion: Residual ash formation[D]. Cambridge: Massachusetts Institute of Technology, 1991.
    [8]
    HELBLE J J. A model for the air emissions of trace metallic elements from coal combustors equipped with electrostatic precipitators[J]. Fuel Process Technol, 2000, 63(2/3): 125-147. https://www.researchgate.net/publication/223578384_Model_for_the_air_emissions_of_trace_metallic_elements_from_coal_combustors_equipped_with_electrostatic_precipitators
    [9]
    徐明厚, 于敦喜, 刘小伟.燃煤可吸入颗粒物的形成与排放[M].北京:科学出版社, 2009.

    XU Ming-hou, YU Dun-xi, LIU Xiao-wei. Formation and Emission of Particulate Matter During Coal Combustion[M]. Beijing: Science Press, 2009.
    [10]
    MCLENNAN A R, BRYANT G W, BAILEY C W, STANMORE B R, WALL T F. An experimental comparison of the ash formed from coals containing pyrite and siderite mineral in oxidizing and reducing conditions[J]. Energy Fuels, 2000, 14(2): 308-315. doi: 10.1021/ef990092h
    [11]
    于敦喜, 徐明厚, 姚洪, 刘小伟, ZHANG Lian, WANG Qun-ying, NINOMIYA Y.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究[J].工程热物理学报, 2007, 28(5): 875-878. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200705050.htm

    YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHANG Lian, WANG Qun-ying, NINOMIYA Y. Study on coal mineral properties and their transformation behavior during combustion by CCSEM[J]. J Eng Thermophys, 2007, 28(5): 875-878. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200705050.htm
    [12]
    占中华.矿物特性对燃煤亚微米颗粒物排放特性影响研究[D].武汉:华中科技大学, 2011.

    ZHAN Zhong-hua. Effect of mineral characteristics on particulate matter emission during pulverized coal combustion[D]. Wuhan: Huazhong University of Science and Technology, 2011.
    [13]
    WANG Q Y, ZHANG L A, SATO A, NINOMIYA Y, YAMASHITA T. Interactions among inherent minerals during coal combustion and their impacts on the emission of PM10. 1. Emission of micrometer-sized particles[J]. Energy Fuels, 2007, 21(2): 756-765. doi: 10.1021/ef0603075
    [14]
    SENIOR C L, FLAGAN R C. Synthetic chars for the study of ash vaporization[C]//Twentieth symposium (international) on combustion. The Combustion Institute, 1984: 921-929.
    [15]
    ARENILLAS A, PEVIDA C, RUBIERA F, PIS J J. Comparison between the reactivity of coal and synthetic coal models[J]. Fuel, 2003, 82(3): 2001-2006. https://www.researchgate.net/publication/223372799_Comparison_between_the_reactivity_of_coal_and_synthetic_coal_models
    [16]
    莫鑫. O2/CO2燃烧条件下煤中黄铁矿的转化行为研究[D].武汉:华中科技大学, 2013.

    MO Xin. Research on transformation of pyrite in coal under O2/CO2 combustion conditions[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [17]
    NINOMIYA Y, WANG Q Y, XU SY, TERAMAE T, AWAYA I. Evaluation of a Mg-based additive for particulate matter (PM2.5) reduction during pulverized coal combustion[J]. Energy Fuels, 2010, 24(1): 199-204. doi: 10.1021/ef900556s
    [18]
    张洪, 胡光州, 范佳鑫, 蒲文秀, 莫言学, 哈斯, 李迎.矿物在煤粉中的分布规律研究[J].工程热物理学报, 2008, 29(7): 1231-1235. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200807042.htm

    ZHANG Hong, HU Guang-zhou, FAN Jia-xin, PU Wen-xiu, MO Yan-xue, HA Si, LI Ying. Study on the distribution of mineral in pulverized coals[J]. J Eng Thermophys, 2008, 29(7): 1231-1235. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200807042.htm
    [19]
    ZHANG P A, YU D X, LUO G Q, YAO H. Temperature effect on central mode particulate matter formation in combustion of coals with different mineral compositions[J]. Energy Fuels, 2015, 29(8): 5245-5252. doi: 10.1021/acs.energyfuels.5b00784
    [20]
    TERAMAE T, TAKARADA T. Fine ash formation during pulverized coal combustion[J]. Energy Fuels, 2009, 23(3): 2018-2024. https://www.researchgate.net/publication/231273778_Fine_Ash_Formation_during_Pulverized_Coal_Combustion
    [21]
    YU D X, XU M H, YAO H, LIU X W, ZHOU K. A new method for identifying the modes of particulate matter from pulverized coal combustion[J]. Powder Technol, 2008, 183(1): 105-114. doi: 10.1016/j.powtec.2007.11.011
    [22]
    肖海平, 周俊虎, 刘建忠.醋酸钙镁高温脱硫脱硝实验研究[J].中国电机工程学报, 2007, 27(35): 23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200735005.htm

    XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong. Laboratory study on the high-temperature capture of SO2 and NOx by calcium magnesium acetate[J].Proc Chin Soc Electr Eng, 2007, 27(35): 23-27. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200735005.htm
    [23]
    刘洪涛, 韩奎华, 路春美, 李辉. O2/CO2气氛下木醋酸调质石灰石再燃/先进再燃脱硝性能研究[J].燃料化学学报, 2013, 41(2): 228-234. doi: 10.1016/S1872-5813(13)60015-8

    LIU Hong-tao, HAN Kui-hua, LU Chun-mei, LI Hui. Experimental study on reburning/advanced reburning performance of limestone modified by wood vinegar for NO reduction under O2/CO2 atmosphere[J].J Fuel Chem Technol, 2013, 41(2): 228-234. doi: 10.1016/S1872-5813(13)60015-8
    [24]
    GAO X P, RAHIM M U, CHEN X X, WU H W. Significant contribution of organically-bound Mg, Ca and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014, 117(1): 825-832. https://www.researchgate.net/publication/259869701_Significant_contribution_of_organically-bound_Mg_Ca_and_Fe_to_inorganic_PM10_emission_during_the_combustion_of_pulverized_Victorian_brown_coal
    [25]
    QIU J R, LI F, ZHENG Y, ZHENG C G, ZHOU H C. The influences of mineral behaviour on blended coal ash fusion characteristics[J]. Fuel, 1999, 78(8): 963-969. doi: 10.1016/S0016-2361(99)00005-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (74) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return