Volume 48 Issue 5
May  2020
Turn off MathJax
Article Contents
LUO Yao-ya, WANG Sen, GUO Shu-jia, YUAN Kai, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 594-600.
Citation: LUO Yao-ya, WANG Sen, GUO Shu-jia, YUAN Kai, WANG Hao, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins[J]. Journal of Fuel Chemistry and Technology, 2020, 48(5): 594-600.

Study on different synthesis methods of ZnxCe2-yZryO4/SAPO-34 catalyst and its catalytic performance in syngas to low-carbon olefins

Funds:

the National Natural Science Foundation of China 21802157

the National Natural Science Foundation of China 21773281

the Natural Science Foundation of Shanxi Province of China 201901D211581

  • Received Date: 2020-01-19
  • Rev Recd Date: 2020-03-16
  • Available Online: 2021-01-23
  • Publish Date: 2020-05-10
  • A series of ZnxCe2-yZryO4 metal oxides were synthesized by sol gel method, hydrothermal method and co-precipitation method respectively and characterized by XRD, BET, HRTEM, CO-TPD, Raman and XPS. The effects of the synthesis method on the morphology, grain size and oxygen vacancy concentration and the catalytic performance in syngas to low-carbon olefin reaction of the ZnxCe2-yZryO4 catalysts were investigated. The results show that the shape, exposed crystal surface, grain size and surface oxygen vacancy concentration of ZnxCe2-yZryO4 solid solution are strongly dependent on the synthesis method. Under the reaction conditions of 300 ℃ and 1.0 MPa, the dual-functional catalysts of ZnxCe2-yZryO4/SAPO-34 prepared by sol-gel method have the highest low-carbon olefin (C2-4=) selectivity (79.5%), while the selectivities of methane and CO2 are only 5.5% and 10.7%, respectively. Here the direct conversion of syngas to low-carbon olefins are realized at low temperature and pressure and the formation of methane and CO2 is greatly reduced.
  • loading
  • [1]
    TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catal, 2013, 3(9):2130-2149. doi: 10.1021/cs4003436
    [2]
    WANG W, WANG S P, MA X B, GONG J L. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011, 40(7):3703-3727. doi: 10.1039/c1cs15008a
    [3]
    ARESTA M, DIBENEDETTO A, ANGELINI A. Catalysis for the valorization of exhaust carbon:from CO2 to chemicals, materials, and fuels. technological use of CO2[J]. Chem Rev, 2014, 114(3):1709-1742. doi: 10.1021/cr4002758
    [4]
    GALVIS H M T, BITTER J H, DAVIDIAN T, MATTHIJS R, DUGULAN A L, JONG K P D. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. JACS, 2012, 134(39):16207-16215. doi: 10.1021/ja304958u
    [5]
    CHENG K, KANG J C, KING D L, SUBRAMANIAN V Y, ZHOU C, ZHANG Q H, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[J]. Adv Catal, 2017, 60:125-208. https://www.sciencedirect.com/science/article/abs/pii/S0360056417300032
    [6]
    JIAO F, LI J, PAN X L, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M. Selective conversion of synthesis gas into lower olefins[J]. Science, 2016, 351(6277):1065-1068. doi: 10.1126/science.aaf1835
    [7]
    CHENG K, GU B, LIU X, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins:Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):4725-4728. doi: 10.1002/anie.201601208
    [8]
    ZHU Y F, PAN X L, JIAO F, LI J, YANG J H, DING M Z, HAN Y, LIU Z, BAO X H. Role of manganese oxide in syngas conversion to light olefins[J]. ACS Catal, 2017, 7:2800-2804. doi: 10.1021/acscatal.7b00221
    [9]
    LIU X L, ZHOU W, YANG Y, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci, 2018, 9(20):4708-4718. doi: 10.1039/C8SC01597J
    [10]
    SU J J, WANG D, Wang Y D, ZHOU H B, LIU C, LIU S, WANG C M, YANG W M, XIE Z K, HE M Y. Direct conversion of syngas to light olefins over Zr-In2O3 and SAPO-34 bifunctional catalysts:Design of oxide component and construction of reaction network[J]. ChemCatChem, 2018, 10:1536-1541. doi: 10.1002/cctc.201702054
    [11]
    REDDY B M, KHAN A, LAKSHMANAN P, AOUINE M, LORIDANT S, VOLTA J C. Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 catalysts by XRD, Raman, and HREM techniques[J]. J Phys Chem B, 2005, 109(8):3355-3363. doi: 10.1021/jp045193h
    [12]
    CHEN A L, ZHOU Y, TA N, LI Y, SHEN W J. Redox properties and catalytic performance of ceria-zirconia nanorods[J]. Catal Sci Technol, 2015, 5(8):4184-4192. doi: 10.1039/C5CY00564G
    [13]
    ZHANG P P, TAN L, YANG G H, TSUBAKI N. One-pass selective conversion of syngas to paraxylene[J]. Chem Sci, 2017, 8(12):7941-7946. doi: 10.1039/C7SC03427J
    [14]
    ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal, 2020, 10(1):302-310. doi: 10.1021/acscatal.9b04309
    [15]
    ZHANG Z X, WANG Y H, LU J M, ZHANG C F, WANG M, LI M R, LIU X B, WANG F. Conversion of isobutene and formaldehyde to diol using praseodymium-doped CeO2 catalyst[J]. ACS Catal, 2016, 8:2635-2644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7215bbd058fcd6c7e9a0a51dfd4e9ec5
    [16]
    LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015, 3(2):634-640. doi: 10.1039/C4TA05770H
    [17]
    PIUMETTI M, BENSAID S, RUSSO N, FINO D. Nanostructured ceria-based catalysts for soot combustion:Investigations on the surface sensitivity[J]. Appl Catal B:Environ, 2015, 165:742-751. doi: 10.1016/j.apcatb.2014.10.062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (227) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return