Volume 48 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.
Citation: ZHOU Xin-yue, WU Yang-wen, MI Teng-ge, LIU Ji, XU Ming-xin, ZHAO Li, LU Qiang. Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion[J]. Journal of Fuel Chemistry and Technology, 2020, 48(12): 1520-1529.

Interaction mechanism between heavy metals and Ce-doped CaO in flue gas of coal combustion

Funds:

the National Natural Science Foundation of China 51922040

the National Natural Science Foundation of China 51876060

Grants from Fok Ying Tung Education Foundation 161051

Fundamental Research Funds for the Central Universities 2020DF01

More Information
  • Corresponding author: LU Qiang, E-mail:qianglu@mail.ustc.edu.cn, qlu@ncepu.edu.cn
  • Received Date: 2020-09-09
  • Rev Recd Date: 2020-10-01
  • Available Online: 2021-01-23
  • Publish Date: 2020-12-10
  • Calcium oxide (CaO) has been widely used as an adsorbent in the purification of heavy metals in coal-fired flue gas. However, the adsorption efficiency is limited and a further modification is needed. The cerium (Ce) modification can redistribute the surface electrons and enhance the chemical activity of CaO. Therefore, the Ce-CaO (100) periodic model was established to study the adsorption mechanism of mercury, selenium, and lead pollutants in the coal-fired flue gas. The results show that, except for the physical adsorption of Hg0 on the Ce-CaO (100) surface, the other heavy metal pollutants are chemically adsorbed on the surface. The Ce-site and O-site are the main active adsorption sites of heavy metal pollutants. Intense charge transfer and strong interaction are observed between adsorption molecules and Ce-CaO (100). Moreover, the adsorption capacity of Ce-doped CaO (100) surface for heavy metal pollutants has been improved, especially the significantly increased capture capacity on Se0, SeO2 and HgCl2.
  • loading
  • [1]
    DENG S, SHI Y, LIU Y, CHEN Z, WANG X F, CAO Q, LI S G, ZHANG F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China[J]. Fuel Process Technol, 2014, 126: 469-475.
    [2]
    郭胜利.燃煤重金属迁移转化特征及其污染控制研究[D].重庆: 重庆大学, 2014.

    GUO Sheng-li. Study on migration and transformation characteristics of heavy metals in coal combustion and its pollution control[D]. Chongqing: Chongqing University, 2014.
    [3]
    乔岗杰, 刘轩, 赵元财, 刘红刚, 孔凡荣, 张锴.燃煤电厂典型重金属排放与控制进展[J].电站系统工程, 2020, 36(2): 1-4+8.

    QIAO Gang-jie, LIU Xuan, ZHAO Yuan-cai, LIU Hong-gang, KONG Fan-rong, ZHANG Kai. Progress in emission and control of typical heavy metals in coal-fired power plants[J]. Power Plant Syst Eng, 2020, 36(2): 1-4+8.
    [4]
    ZHANG Y L, ZHAO Y C, YANG Y J, LIU P F, LIU J, ZHANG J Y. DFT study on Hg0 adsorption over graphene oxide decorated by transition metals (Zn, Cu and Ni)[J]. Appl Surf Sci, 2020, 525: 146519.
    [5]
    YOO J M, KIM B S, LEE J C, KIM M S, NAM C W. Kinetics of the volatilization removal of lead in electric arc furnace dust[J]. Mater Trans, 2005, 46(2): 323-328.
    [6]
    YANG Y J, LIU J, WANG Z, MIAO S, DING J Y, YU Y N, ZHANG J C. A complete catalytic reaction scheme for Hg0 oxidation by HCl over RuO2/TiO2 catalyst[J]. J Hazard Mater, 2019, 373: 660-670.
    [7]
    MCNUTT M. Mercury and health[J]. Sci, 2013, 341: 1430-1430.
    [8]
    YANG J P, ZHAO Y C, MA S M, ZHU B B, ZHANG J Y, ZHENG C G. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environ Sci Technol, 2016, 50(21): 12040-12047.
    [9]
    HOU W H, ZHOU J S, QI P, GAO X, LUO Z Y. Effect of H2S/HCl on the removal of elemental mercury in syngas over CeO2-TiO2[J]. Chem Eng J, 2014, 241: 131-137.
    [10]
    FAN Y M, ZHOU Y Q, ZHU Z W, DU W, LI L L. Zerovalent selenium adsorption mechanisms on CaO surface: DFT calculation and experimental study[J]. J Phys Chem A, 2017, 121(39): 7385-7392.
    [11]
    FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017, 413: 366-371.
    [12]
    XING J Y, WANG C B, ZOU C, ZHANG Y. DFT study of Se and SeO2 adsorbed on CaO (0 0 1) surface: Role of oxygen[J]. Appl Surf Sci, 2020, 510: 145488.
    [13]
    CHENG J F, ZENG H C, ZHANG Z H, XU M H. The effects of solid absorbents on the emission of trace elements, SO2, and NOx during coal combustion[J]. Int J Energy Res, 2001, 25(12): 1043-1052.
    [14]
    CLARKE L B. The fate of trace elements during coal combustion and gasification: An overview[J]. Fuel, 1993, 72(6): 731-736.
    [15]
    GHOSHDASTIDAR A, MAHULI S K, AGNIHOTRI R, FAN L. Selenium capture using sorbent powders: mechanism of sorption by hydrated lime[J]. Environ Sci Technol, 1996, 30(2): 447-452.
    [16]
    WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8): 1833-1849.
    [17]
    WANG J, XIA S, YU L. Adsorption of Pb (Ⅱ) on the kaolinite (001) surface in aqueous system: A DFT approach[J]. Appl Surf Sci, 2015, 339: 28-35.
    [18]
    LOEF M, MENDOZA L F, WALACH H. Lead (Pb) and the risk of Alzheimer's disease or cognitive decline: A systematic review[J]. Toxin Rev, 2011, 30(4): 103-114.
    [19]
    NAVASACIEN A, GUALLAR E, SILBERGELD E K, ROTHENBERG S J. Lead exposure and cardiovascular disease-A systematic review[J]. Environ Health Perspect, 2007, 115(3): 472-482.
    [20]
    MARKUS J, MCBRATNEY A B. A review of the contamination of soil with lead: Ⅱ. Spatial distribution and risk assessment of soil lead[J]. Environ Int, 2001, 27(5): 399-411.
    [21]
    马晓文, 李建军.燃煤电厂重金属污染与控制技术研究进展[J].四川化工, 2019, 22(1): 5-8.

    MA Xiao-wen, LI Jian-jun. Research progress of heavy metal pollution and control technology in coal-fired power plants[J]. Sichuan Chem Eng, 2019, 22(1): 5-8.
    [22]
    郭胜利, 李东伟, 耿伟乐, 张建.调制碳酸钙对燃煤重金属As, Cd, Zn的排放控制[J].煤炭学报, 2015, 40(12): 2967-2973.

    GUO Sheng-li, LI Wei-dong, GENG Wei-le, ZHANG Jian. Emission control of heavy metals As, Cd, and Zn from coal combustion by calcined calcium carbonate[J]. Acta Coal Sin, 2015, 40(12): 2967-2973.
    [23]
    刘晶, 郑楚光, 曾汉才, 张军营, 陆晓华.固体吸附剂控制燃煤重金属排放的实验研究[J].环境科学, 2003, 24(5): 23-27.

    LIU Jing, ZHENG Chu-guang, ZENG Han-cai, ZHANG Jun-ying, LU Xiao-hua. Experimental study on controlling heavy metal emission from coal combustion with solid adsorbents[J]. Environ Sci, 2003, 24(5): 23-27.
    [24]
    李明晖.飞灰中未燃尽碳及氧化钙表面吸附砷的机理研究[D].北京: 华北电力大学, 2019.

    LI Ming-hui. Mechanism of arsenic adsorption on unburned carbon and calcium oxide in fly ash[D]. Beijing: North China Electric Power University, 2019.
    [25]
    孙晓, 钱枫, 魏新鲜, 严军.添加CaO对燃煤重金属元素富集效果的影响[J].化工环保, 2016, 36(2): 205-210.

    SUN Xiao, QIAN Feng, WEI Xin-xian, YAN Jun. Effect of CaO addition on enrichment of heavy metals in coal combustion[J]. Chem Environ Prot, 2016, 36(2): 205-210.
    [26]
    吴晗.氧化钙基CO2吸附剂的改性研究[D].上海: 华东理工大学, 2013.

    WU Han. Modification of CaO based CO2 adsorbent[D]. Shanghai: East China University of science and technology, 2013.
    [27]
    LANG J H, HAN Q, YANG J H, LI C S, YANG L L, ZHANG Y J, GAO M, WANG D D, CAO J. Fabrication and optical properties of Ce-doped ZnO nanorods[J]. J Appl Phys, 2010, 107: 074302.
    [28]
    DONG X, LIN Y C, MA Y Q, ZHAO L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes[J]. R Soc Chem, 2019, 9: 27674.
    [29]
    LU H, KHAN A, PRATSINIS S E, SMINRNIOTIS P G. Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy Fuels, 2009, 23(2): 1093-1100.
    [30]
    张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军.钙对焦炭非均相还原NO的微观作用机理: DFT研究[J].燃料化学学报, 2020, 48(2): 163-171.

    ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Micro mechanism of calcium on heterogeneous reduction of no by coke: DFT study[J]. Acta Fuel Chem, 2020, 48(2): 163-171.
    [31]
    袁淑萍, 王建国, 李永旺, 彭少逸. Fe在丝光沸石骨架中取代位置的DFT研究[J].燃料化学学报, 2001, 29(S1): 252-254.

    YUAN Shu-ping, WANG Jian-guo, LI Yong-wang, PENG Shao-yi. DFT Study on the substitution sites of Fe in mordenite framework[J]. Acta Fuel Chem, 2001, 29(S1): 252-254.
    [32]
    LIU L, HONG D, GUO X. A study of metals promoted CaO-based CO2 sorbents for high temperature application by combining experimental and DFT calculations[J]. J CO2 Util, 2017, 22: 155-163.
    [33]
    FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017, 420: 465-471.
    [34]
    FAN Y M, YAO J G, ZHANG Z L, SCEATS M, ZHUO Y Q, LI L L, MAITLAND G C, FENNELL P S. Pressurized calcium looping in the presence of steam in a spout-fluidized-bed reactor with DFT analysis[J]. Fuel Process Technol, 2018, 169: 24-41.
    [35]
    LI Z P, NIU S L, ZHAO G J, HAN K H, LI Y J, LU C M, CHENG S. Molecular simulation study of strontium doping on the adsorption of methanol on CaO (100) surface[J]. J Fuel Chem Technol, 2020, 48(2): 172-178.
    [36]
    ESRAFILI M D, NEMATOLLAHI P, ABDOLLAHPOUR H. A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts[J]. Appl Surf Sci, 2016, 378: 418-425.
    [37]
    RAHMATHULLA S S, SIRAJUDDEEN M M S. Nitrogen induced half metallic ferromagnetism in oxides of calcium and cadmium: A DFT perspective[J]. Mater Chem Phys, 2020, 243: 122336.
    [38]
    DAI W, SHUI Z H, LI K. First-principle investigations of CaO (100) surface and adsorption of H2O on CaO (100)[J]. Comput Theor Chem, 2011, 967(1): 185-190.
    [39]
    GALLOWAY B, PADAK B. Effect of flue gas components on the adsorption of sulfur oxides on CaO (100)[J]. Fuel, 2017, 197: 541-550.
    [40]
    CHAKRADHAR A, LIU Y, SCHMIDT J, KADOSSOV E, BURGHAUS U. Adsorption and dissociation kinetics of alkanes on CaO (100)[J]. Surf Sci, 2011, 605(15/16): 1537-1543.
    [41]
    WANG W J, FAN L L, WANG G P, LI Y H. CO2 and SO2 sorption on the alkali metals doped CaO (100) surface: A DFT-D study[J]. Appl Surf Sci, 2017, 425: 972-977.
    [42]
    闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J].燃料化学学报, 2019, 47(10): 1163-1172.

    YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHENG Liang. Theoretical study on the effect of H2O on SO2 adsorption on CaO surface[J]. Acta Fuel Chem, 2019, 47(10): 1163-1172.
    [43]
    徐沁, 陈大志.本征O空位缺陷对ZnO表面甲醛吸附性质影响的密度泛函理论研究[J].应用物理, 2020, 10(6): 8.

    XU Qing, CHENG Da-zhi. Density functional theory study on the effect of intrinsic O vacancy defects on formaldehyde adsorption on ZnO surface[J]. Appl Phys, 2020, 10(6): 8.
    [44]
    MILMAN V, REFSON K, CLARK S J, PICKARD C J, YATES J R, GAO S P, HASNIP P J, PROBERT M I J, PERLOV A, SEGALL M D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation[J]. J Mol Struct: THEOCHEM, 2010, 954(1/3): 22-35.
    [45]
    CHEN H, CHOI Y, LIU M L, LIN M C. A theoretical study of surface reduction mechanisms of CeO2 (111) and (110) by H2[J]. Chem Phys Chem, 2007, 8(6): 849-855.
    [46]
    LOSCHEN C, CARRASCO J, NEYMAN K M, ILLAS F. First-principles LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter[J]. Phys Rev B, 2007, 75(3): 035115.
    [47]
    WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38(8), 1833-1849.
    [48]
    XIN G, ZHAO P, ZHENG C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proc Combust Inst, 2009, 32(2): 2693-2699.
    [49]
    FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017, 413: 366-371.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (428) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return