Volume 45 Issue 7
Jul.  2017
Turn off MathJax
Article Contents
Fatemeh Nourbakhsh, Mohammad Pazouki, Mohsen Mohsennia. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 871-879.
Citation: Fatemeh Nourbakhsh, Mohammad Pazouki, Mohsen Mohsennia. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran[J]. Journal of Fuel Chemistry and Technology, 2017, 45(7): 871-879.

Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran

More Information
  • Corresponding author: Mohammad Pazouki, Tel: +98 26 3628 0040-9, Fax: +98 26 36201888, E-mail: mpazouki@merc.ac.ir, mpaz6@yahoo.com
  • Received Date: 2017-02-13
  • Rev Recd Date: 2017-05-17
  • Available Online: 2021-01-23
  • Publish Date: 2017-07-10
  • Utilizing microbial fuel cells (MFCs) is a promising technology for energy-efficient domestic wastewater treatment, but it still faces practical barriers such as low power generation. In this study, the LaMnO3 perovskite-type oxide nanoparticles and nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite (the cathode and anode catalysts, respectively) have been prepared and used to enhance power density of MFC. The prepared La-based perovskite oxide catalysts were characterized by X-ray diffraction (XRD) and scanning electron microscopies (SEM). The electrocatalytic properties of the prepared catalysts were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and Tafel plot at ambient temperature. Results show the exchange current densities of LaMnO3/carbon cloth cathode and NCP nanocomposite/carbon cloth anode were 1.68 and 7 times more compared to carbon cloth cathode, respectively. In comparison to the bare carbon cloth anode, the MFC with the modified electrodes shows 11 times more enhancement in power density output which according to electrochemical results, it can be due to the enhancement of the electron transfer capability. These cathodic and anodic catalysts were examined in batch and semi-continuous modes to provide conditions close to industrial conditions. This study suggests that utilizing these low cost catalysts has promising potential for wastewater treatment in MFC with high power generation and good COD removal efficiency.
  • loading
  • [1]
    KHAN M Z, NIZAMI A S, REHAN M, OUDA O K M, SULTANA S, ISMAIL I M and SHAHZAD K. Microbial electrolysis cells for hydrogen production and urban wastewater treatment:A case study of Saudi Arabia[J]. Appl Energy, 2017, 185(P1):410-420. http://www.sciencedirect.com/science/article/pii/S0306261916315902
    [2]
    KIM J, KIM K, YE H, LEE E, SHIN C, MCCARTY P L and BAE J. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environ Sci Technol, 2011, 45(2):576-581. doi: 10.1021/es1027103
    [3]
    ANGENENT L T, KARIM K, AL-DAHHAN M, WRENN B A and DOMIGUEZ-ESPINOSA R. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol, 2004, 22(9):477-485. doi: 10.1016/j.tibtech.2004.07.001
    [4]
    HUGGINS T, FALLGREN P H, JIN S and REN Z J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater[J]. J. Microb Biochem Technol, 2013, 6(S6):1-5.
    [5]
    PHAM T H, RABAEY K, AELTERMAN P, CLAUWAERT P, SCHAMPHELAIRE L, BOON N and VERSTRAETE W. Microbial fuel cells in relation to conventional anaerobic digestion technology[J]. Eng Life Sci, 2006, 6(3):285-292. doi: 10.1002/(ISSN)1618-2863
    [6]
    LOGAN B E and RABEAY K. Conversion of wastes into bioelectricity and chemical by using microbial electrochemical technologies[J]. Science, 2012, 337(6095):686-690. doi: 10.1126/science.1217412
    [7]
    LOGAN B E and REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends Microbiol, 2006, 14(12):512-518. doi: 10.1016/j.tim.2006.10.003
    [8]
    YOSHIKAWA K, HIRASAWA T and SHIMIZU H. Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803[J]. J Biosci Bioeng, 2015, 119(1):82-84. doi: 10.1016/j.jbiosc.2014.06.001
    [9]
    RABAEY K, ANGENENT L, SCHRODER U and KELLER J. Bioelectrochemical systems:from extracellular electron transfer to biotechnological application, in Biotechnology Application[M]. London, United Kingdom:IWA Publishing, 2009:137-152.
    [10]
    ALZAHRA'A ALATRAKTCHI F, ZHANG Y and ANGELIDAKI I. Nanomodification of the electrodes in microbial fuel cell:Impact of nanoparticle density on electricity production and microbial community[J]. Appl Energy, 2014, 116(2013):216-222. http://www.sciencedirect.com/science/article/pii/S0306261913009653
    [11]
    JANICEK A, FAN Y and LIU H. Performance and stability of different cathode base materials for use in microbial fuel cells[J]. J Power Sources, 2015, 280:159-165. doi: 10.1016/j.jpowsour.2015.01.098
    [12]
    RICHTER H, MCCARTHY K, NEVIN K P, JOHNSON J P, ROTELLO V M and LOVELEY D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes[J]. Langmuir, 2008, 24(8):4367-4379. http://europepmc.org/abstract/med/18303924
    [13]
    FAN Y Z, HU H Q and LIU H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. J Power Sources, 2007, 171(2):348-354. doi: 10.1016/j.jpowsour.2007.06.220
    [14]
    MIN B and LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004, 38(21):5809-5814. doi: 10.1021/es0491026
    [15]
    CHAUDHURI S K and LOVLEY D R. Electricity generation by direct oxidation of glucose in microbial fuel cells[J]. Nat Biotechnol, 2003, 21(10):1229-1232. doi: 10.1038/nbt867
    [16]
    LIU J, LIU J, HE W, QU Y, REN N and FENG Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. J Power Source 2014, 265:391-396. doi: 10.1016/j.jpowsour.2014.04.005
    [17]
    MUSTAKEEM M. Electrode materials for microbial fuel cells:nanomaterial approach[J]. Mater Renew Sustain. Energy, 2015, 4(4):22-34. doi: 10.1007/s40243-015-0063-8
    [18]
    DONG H, YU H, WANG X, ZHOU Q and SUN J. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells[J]. J Chem Technol Biotechnol, 2012, 88(5):774-778. doi: 10.1002/jctb.3893/full
    [19]
    LI D, QU Y P, LIU J, HE W H, WANG H M and FENG Y J. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell[J]. J Power Sources, 2014, 272:909-914. doi: 10.1016/j.jpowsour.2014.09.053
    [20]
    FABBRI E, MOHAMED R, LEVECQUE P, CONRAD O, KÖTZ R and SCHMIDT T J. Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media[J]. A.C.S. Catal, 2014, 4(4):1061-1070. doi: 10.1021/cs400903k
    [21]
    JORISSEN L. Bifunctional oxygen/air electrodes[J]. J Power Sources, 2006, 155(1):23-32. doi: 10.1016/j.jpowsour.2005.07.038
    [22]
    HYODO T, HAYASHI M, MIURA N and YAMAZOE N. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution[J]. J Electrochem Soc, 1996, 143(11):L266-L267. doi: 10.1149/1.1837229
    [23]
    BAI L J, WANG X Y, HE H B and GUO Q J. Preparation and characteristics of LaxSr1-xCoO3 as cathode catalysts for microbial fuel cell, in Particle Science and Engineering:Proceedings of UK-China International Particle Technology Forum Ⅳ[M]. UK:The Royal Society of Chemistry, 2014:15-21.
    [24]
    KATURI K P, SCOTT K, HEAD I M, PICIOREANU C and CURTIS T P. Microbial fuel cells meet with external resistance[J]. Bioresour Technol, 2011, 102(3):2758-2766. doi: 10.1016/j.biortech.2010.10.147
    [25]
    YUAN Y, ZHOU S G, LIU Y and TANG J H. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J]. Environ Sci Technol, 2013, 47(24):14525-14532. doi: 10.1021/es404163g
    [26]
    HE J B, LIN X Q and PAN J. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin:A comparison with graphite paste electrode via voltammetry and chronopotentiometry[J]. Electroanalysis, 2005, 17(18):1681-1686. doi: 10.1002/(ISSN)1521-4109
    [27]
    HOPARK I, CHRISTY M, KIM P and NAHMA K-S. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode inmediator-less microbial fuel cell[J]. Biosens Bioelectron, 2014, 58:75-80. doi: 10.1016/j.bios.2014.02.044
    [28]
    WANG Y, LI B, CUI D, XIANG X and LI W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell[J]. Biosens Bioelectron, 2014, 51:349-355. doi: 10.1016/j.bios.2013.07.069
    [29]
    CHANG H Y, CHANG H C and LEE. K Y. Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application[J]. Vacuum, 2013, 87:164-168. doi: 10.1016/j.vacuum.2012.04.027
    [30]
    QIAO Y, WU X-S and LI C M. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells[J]. J Power Source, 2014, 266:226-231. doi: 10.1016/j.jpowsour.2014.05.015
    [31]
    YUAN H, DENG L, CHAN Y and YUAN Y. MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells[J]. Electrochim Acta, 2016, 196:280-285. doi: 10.1016/j.electacta.2016.02.183
    [32]
    HUANG J, ZHU N, YANG T, ZHANG T and WU P. Nickel oxide and carbon nanotube composite(NiO/CNT)as a novel cathode non-precious metal catalyst in microbial fuel cells[J]. Biosens Bioelectron, 2015, 72:332-339. doi: 10.1016/j.bios.2015.05.035
    [33]
    LU M, GUO L, KHARKWAL S, WU H, NG H Y and YAU LI S. Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells[J]. J Power Source, 2013, 221:381-386. doi: 10.1016/j.jpowsour.2012.08.034
    [34]
    QIAO Y, LI C M, BAO S-J and BAO Q-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. J Power Source, 2007, 170(1):79-84. doi: 10.1016/j.jpowsour.2007.03.048
    [35]
    MORADI G R, RAHMANZADEH M and SHARIFNIA S. Kinetic investigation of CO2 reforming of CH4 over La-Ni based perovskite[J]. Chem Eng J, 2010, 162(2):787-791. doi: 10.1016/j.cej.2010.06.006
    [36]
    LEE J Y, LIANG K, AN K H and LEE Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synth Met, 2005, 150(2):153-157. doi: 10.1016/j.synthmet.2005.01.016
    [37]
    QIAO Y, BAO S-J, LI C M, CUI X-Q, LU Z-S and GUO J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano, 2008, 2(1):113-119. doi: 10.1021/nn700102s
    [38]
    ZOU Y and WANG Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries[J]. Nanoscale, 2011, 3(6):2615-2620. doi: 10.1039/c1nr10070j
    [39]
    SEKAR N and RAMASAMY R P. Electrochemical impedance spectroscopy for microbial fuel cell characterization[J]. J Microb Biochem Technol, 2013, andamp; Technology, 5(S6):2-14. https://www.researchgate.net/publication/257651671_Electrochemical_Impedance_Spectroscopy_for_Microbial_Fuel_Cell_Characterization
    [40]
    LOGAN B E, AELTERMAN P, HAMELERS B, ROZENDAL R, SCHRÖER U, KELLER J, FREGUIA S, VERSTRAETE W and RABAEY K. Microbial fuel cells:methodology and technology[J]. Environ Sci Technol, 2006, 40(17):5181-5192. doi: 10.1021/es0605016
    [41]
    HSU C H and MANSFELD F. Concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion, 2001, 57(9):747-748. doi: 10.5006/1.3280607
    [42]
    REZAEI F, RICHARD T L, BRENNAN R and LOGAN B E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environ Sci Technol, 2007, 41(11):4053-4058. doi: 10.1021/es070426e
    [43]
    HE Z and MANSFELD F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energ Environ Sci, 2009, 22(2):215-219. http://pubs.rsc.org/en/Content/ArticleLanding/2009/EE/b814914c#!divAbstract
    [44]
    ZHOU M, CHI M, WANG H and JIN T. Anode modification by electrochemical oxi-dation:A new practical method to improve the performance of microbial fuel cells[J]. Biochem Eng J, 2012, 60:151-155. doi: 10.1016/j.bej.2011.10.014
    [45]
    MANOHAR A K, BRETSCHGER O, NEALSON K H and MANSFELD F. The polarization behavior of the anode in a microbial fuel cell[J]. Electrochim Acta, 2008, 53(9):3508-3513. doi: 10.1016/j.electacta.2007.12.002
    [46]
    ZHAO F, HARNISCH F, SCHRÖDER U, SCHOLZ F, BOGDANOFF P and HERRMANN I. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environ Sci Technol, 2006, 40(17):5193-5199. doi: 10.1021/es060332p
    [47]
    GANESH K and JAMBECK J R. Treatment of landfill leachate using microbial fuel cells:Alternative anodes and semi-continuous operation[J]. Bioresour Technol, 2013, 139:383-387. doi: 10.1016/j.biortech.2013.04.013
    [48]
    REN L, AHN Y and LOGAN B E. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment[J]. Environ Sci Technol, 2014, 48(7):4199-4206. doi: 10.1021/es500737m
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return