Volume 46 Issue 7
Jul.  2018
Turn off MathJax
Article Contents
SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 856-863.
Citation: SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 856-863.

Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite

Funds:

the National Natural Science Foundation of China U1662135

the National Natural Science Foundation of China 21376114

More Information
  • Corresponding author: SONG Li-juan, Tel/Fax:+86-024-56860658, E-mail:lsong56@263.net
  • Received Date: 2018-02-24
  • Rev Recd Date: 2018-05-23
  • Available Online: 2021-01-23
  • Publish Date: 2018-07-10
  • The CeUSY zeolites loaded with Ce were prepared by liquid phase ion exchange method, and the Ni contamination was conducted by Mitchell impregnation method. The texture properties were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD) and N2 adsorption. Moreover, the nickel tolerance was evaluated by the MAT evaluation device. The results show that CeUSY zeolites with different Ce contents possess a nickel tolerance performance varying in a volcano type with the increase of Ce content. Through the H2-TPR and Py-FTIR characterization of CeUSY zeolite before and after Ni contamination, it is evident that the change in Ce species morphology is one of the reasons affecting nickel tolerances. It is thought that the interaction between Ce(OH)2+ and Ni(OH)+ in the SOD cages of the CeUSY zeolite results in a loss of H2O molecule to form a stable Ce3+-O-Ni2+ structure at high temperature, which hinders the combination of Ni species with the framework aluminum to prevent the destruction of the Brønsted acid sites in CeUSY zeolite and effectively inhibits the formation of reducible NiO species. However, with the increase of the content of Ce3+, the part of the introduced Ce would happen to self-assemble in the zeolites as multinuclear hydroxylated species which interacts weakly with Ni2+ species compared to mononuclear species and then reduces the nickel tolerance.
  • loading
  • [1]
    VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking:Recent developments on the grand old lady of zeolite catalysis[J]. Chem Soc Rev, 2015, 44(20):7342-7370. doi: 10.1039/C5CS00376H
    [2]
    AKAH A. Application of rare earths in fluid catalytic cracking:A review[J]. J Rare Earths, 2017, 35(10):941-956. doi: 10.1016/S1002-0721(17)60998-0
    [3]
    SUZUKI M, TSUTSUMI K, TAKAHASHI H, SAITO Y. Tpr study on reducibility of nickel ions in zeolite Y[J]. Zeolites, 1989, 9(2):98-103. doi: 10.1016/0144-2449(89)90056-0
    [4]
    刘晓东. 钝化组元迁移性和新型固体钝化剂的研究[D]. 北京: 石油化工科学研究院, 2001. http://cdmd.cnki.com.cn/Article/CDMD-86301-2002051237.htm

    LIU Xiao-dong. Study on the migration of passive components and the study of new solid passivation agent[D]. Beijing: Petrochemical Engineering Research Institute, 2001. http://cdmd.cnki.com.cn/Article/CDMD-86301-2002051237.htm
    [5]
    SEO S M, PARK M, CHUNG D Y, LIM W T. Preparation of excessively Ni2+-exchanged zeolite Y (FAU, Si/Al=1.70) and its single-crystal structure[J]. J Porous Mater, 2014, 21(5):521-530. doi: 10.1007/s10934-014-9799-2
    [6]
    LUENGNARUEMITCHAI A, KAENGSILALAI A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide[J]. Chem Eng J, 2008, 144(1):96-102. doi: 10.1016/j.cej.2008.05.023
    [7]
    YANG S J, CHEN Y W, LI C. Vanadium-nickel interaction in REY zeolite[J]. Appl Catal A:Gen, 1994, 117:109-123. doi: 10.1016/0926-860X(94)85092-5
    [8]
    POMPEA R, JÄRÓASB S, VANNERBERGB N G. On the interaction of vanadium and nickel compounds with cracking catalyst[J]. Appl Catal, 1984, 13:171-179. doi: 10.1016/S0166-9834(00)83335-7
    [9]
    GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl Catals, 1989, 54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7
    [10]
    ESCOBAR A S, PINTO F V, CERQUEIRA H S, PEREIRA M M. Role of nickel and vanadium over USY and RE-USY coke formation[J]. Appl Catal A:Gen, 2006, 315:68-73. doi: 10.1016/j.apcata.2006.09.004
    [11]
    SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z. The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013, 218:115-122. http://www.sciencedirect.com/science/article/pii/S0920586113003192
    [12]
    WALLENSTEIN D, SCHÄFER K, HARDING R H. Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters[J]. Appl Catal A:Gen, 2015, 502:27-41. doi: 10.1016/j.apcata.2015.05.010
    [13]
    魏晓丽, 毛安国, 宋宝梅.镍污染方式对催化剂裂化性能的影响[J].石油炼制与化工, 2008, 39(6), 6-10. http://www.cqvip.com/QK/95141A/200806/27516662.html

    WEI Xiao-Li, MAO An-guo, SONG Bao-mei. Effect of the ways of nickel contamination on the catalytic cracking performance of FCC catalyst[J]. Pet Process Petrochem, 2008, 39(6):6-10. http://www.cqvip.com/QK/95141A/200806/27516662.html
    [14]
    LI D, LI F, REN J, SUN Y H. Rare earth-modified bifunctional Ni/HY catalysts[J]. Appl Catal A:Gen, 2003, 241(1):15-24. http://www.sciencedirect.com/science/article/pii/S0926860X02004544
    [15]
    WESTERMANNA A, AZAMBREB B, BACARIZAA M C, GRAÇAA I, RIBEIROA M F, LOPESA J M, HENRIQUESA C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite:A FT-IR In Situ/Operando study[J]. Catal Today, 2017, 283:74-81. doi: 10.1016/j.cattod.2016.02.031
    [16]
    刘璞生, 张忠东, 高雄厚.稀土含量对Y型分子筛催化性能的影响[J].石油学报(石油加工), 2010, S1:107-111. http://www.cqvip.com/QK/94167X/2010S1/1003552781.html

    LIU Pu-sheng, ZHANG Zhong-dong, GAO Xiong-hou. Effects of rare earth concent on catalytic properties of Y zeolite[J]. Acta Pet Sin (Pet Process Sect), 2010, S1:107-111 http://www.cqvip.com/QK/94167X/2010S1/1003552781.html
    [17]
    GAO X, QIN Z, WANG B, ZHAO X, LI J, ZHAO H, LIU H, SHEN B. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion[J]. Appl Catal A:Gen, 2012, 413:254-260. http://www.sciencedirect.com/science/article/pii/S0926860X11006764
    [18]
    张畅, 秦玉才, 高雄厚, 张海涛, 莫周胜, 初春雨, 张晓彤, 宋丽娟. Ce改性对Y型分子筛酸性及其催化转化性能的调变机制[J].物理化学学报, 2015, 31(2):344-352. doi: 10.3866/PKU.WHXB201412163

    ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation of the acidity and catalytic conversion properties of y zeolites modified by cerium cations[J]. Acta Phys-Chim Sin, 2015, 31(2):344-352. doi: 10.3866/PKU.WHXB201412163
    [19]
    ZU Y, QIN Y, GAO X, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017, 203:96-107. doi: 10.1016/j.apcatb.2016.10.008
    [20]
    ZHANG L, QIN Y, JI D, CHU G, GAO X, ZHANG X T, SONG L J. Effect of cerium ions initial distribution on the crystalline structure and catalytic performance of CeY zeolite[J]. J Rare Earths, 2017, 35(8):791-799. doi: 10.1016/S1002-0721(17)60978-5
    [21]
    于善青, 田辉平, 朱玉霞, 代振宇, 龙军.稀土离子调变Y型分子筛结构稳定性和酸性的机制[J].物理化学学报, 2011, 27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101

    YU Shan-qing, TIAN Hui-ping, ZHU Yu-xia, DAI Zhen-yu, LONG Jun. Mechanism of rare earth cations on the stability and acidity of Y zeolites[J]. Acta Phys-Chim Sin, 2011, 27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101
    [22]
    LI J, ZENG P, ZHAO L, REN S, GUO Q, ZHAO H, WANG B, LIU H, PANG X, GAO X, SHEN B. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015, 329:441-448. doi: 10.1016/j.jcat.2015.06.012
    [23]
    DU X, ZHANG H, LI X, TAN Z, LIU H, GAO X. Cation location and migration in lanthanum-exchanged NaY zeolite[J]. Chin J Catal, 2013, 34(8):1599-1607. doi: 10.1016/S1872-2067(11)60622-6
    [24]
    DU X, GAO X, ZHANG H, LI X, LIU P. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013, 35:17-22. doi: 10.1016/j.catcom.2013.02.010
    [25]
    DENG C, ZHANG J, DONG L, HUANG M, LI B, JIN G, GAO J, ZHANG F, FAN M, ZHANG L, GONG Y. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite[J]. Sci Rep-UK, 2016, 6:23382. doi: 10.1038/srep23382
    [26]
    SCHUÜβLER F, PIDKO E A, KOLVENBACH R, SIEVERS C, HENSEN E J, VAN SANTEN R A, LERCHER J A. Nature and location of cationic lanthanum species in high alumina containing faujasite type zeolites[J]. J Phys Chem C, 2011, 115(44):21763-21776. doi: 10.1021/jp205771e
    [27]
    MITCHELL B R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on Fresh catalysts[J]. Ind Eng Chem Prod Res Dev, 1980, 19:209-213 doi: 10.1021/i360074a015
    [28]
    王林, 孙雪芹, 陈淑琨, 曹庚振, 瞿朝霞, 杨一青, 王宝杰.镍的沉积对催化剂活性及汽油性质的影响[J].应用化工, 2012, 41(11):1960-1962. http://www.oalib.com/paper/5123307

    WANG Lin, SUN Xue-qin, CHEN Shu-kun, CAO Geng-zhen, QU Zhao-xia, YANG Yi-qing, WANG Bao-jie. Influence of nickel depositon on catalytic cracking activity and gasoline properties[J]. Appl Chem Ind, 2012, 41(11):1960-1962. http://www.oalib.com/paper/5123307
    [29]
    ZHENG X, WU S, WANG S, WANG S. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Appl Catal A:Gen, 2005, 283(1):217-223. http://www.sciencedirect.com/science/article/pii/S0926860X05000165
    [30]
    刘会敏, 李宇明, 吴昊, 杨维维, 贺德华. Nd, Ce和La改性对Ni/SBA-15催化剂在CH4/CO2重整反应中性能的影响[J].催化学报, 2014, 35(9):1520-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201409017

    LIU Hui-Min, LI Yu-ming, WU Hao, YANG Wei-wei, HE De-hua. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chin J Catal, 2014, 35(9):1520-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb201409017
    [31]
    SONG H, WAN X, DAI M, ZHANG J, LI F, SONG H. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013, 116:52-62. doi: 10.1016/j.fuproc.2013.04.017
    [32]
    GRACA I, GONZÁLEZ L V, BACARIZA M C, FERNANDES A, HENRIQUES C, LOPES J M, RIBEIRO M F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Appl Catal B:Environ, 2014, 147:101-110. doi: 10.1016/j.apcatb.2013.08.010
    [33]
    ZHANG S H, MURATSUGU S, ISHIGURO N, TADA M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catal, 2013, 3(8):1855-1864. doi: 10.1021/cs400159w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (85) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return