Volume 47 Issue 4
Apr.  2019
Turn off MathJax
Article Contents
ZHAI Bo-yin, CHEN Ying, LIANG Yu-ning, LI Yong-chao, LIANG Hong-bao. Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 504-512.
Citation: ZHAI Bo-yin, CHEN Ying, LIANG Yu-ning, LI Yong-chao, LIANG Hong-bao. Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. Journal of Fuel Chemistry and Technology, 2019, 47(4): 504-512.

Modifying BiVO4 with metal-organic frameworks for enhanced photocatalytic activity under visible light

Funds:

the National Natural Science Foundation of China 51146008

More Information
  • Corresponding author: CHEN Ying, Tel: 0459-6503786, E-mail: 1308852974@qq.com
  • Received Date: 2018-11-12
  • Rev Recd Date: 2019-02-18
  • Available Online: 2021-01-23
  • Publish Date: 2019-04-10
  • A new composite photocatalyst, viz., BiVO4/MIL-53(Fe), was prepared through a simple hydrothermal approach and characterized by means of X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry, Fourier transform infrared spectroscopy, N2 absorption-desorption and UV-visual diffuse reflectance spectroscopy. The photocatalytic activity of prepared BiVO4/MIL-53(Fe) catalysts was investigated in the degradation of RhB as a simulated pollutant and a possible reaction mechanism for the photocatalytic degradation of RhB was then proposed. The results indicate that after modifying BiVO4 with metal-organic frameworks (MOFs), the surface area of BiVO4/MIL-53(Fe) is improved greatly; moreover, the BiVO4/MIL-53(Fe) composite also exhibits much higher photocatalytic activity than pristine BiVO4 and MIL-53(Fe). In particular, the photocatalytic activity of BF-2 composite is about 5.2 and 8.1 times higher than those of pure MIL-53 (Fe) and BiVO4, respectively. In addition, BiVO4/MIL-53(Fe) composite photocatalyst is rather stable and can keep its photocatalytic activity and structure after four recycling tests.
  • loading
  • [1]
    GAO Y X, YU G, LIU K, DENG S B, WANG B, HUANG J, WANG Y J. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework[J]. Chem Eng J, 2017, 330:157-165. doi: 10.1016/j.cej.2017.06.139
    [2]
    AL M H, ABID H R, SUNDERLAND B, WANG S B. Metal organic frameworks as a drug delivery system for flurbiprofen[J]. Drug Des Dev Ther, 2017, 11:2685-2695. doi: 10.2147/DDDT
    [3]
    JIN C N, ZHANG S N, ZHANG Z J, CHEN Y. Mimic carbonic anhydrase using metal-organic frameworks for CO2 capture and conversion[J]. Inorg Chem, 2018, 57(4):2169-2174. doi: 10.1021/acs.inorgchem.7b03021
    [4]
    YU X, WANG L, COHEN S M. Photocatalytic metal-organic frameworks for organic transformations[J]. CrystEngComm, 2017, 19(29):4126-4136. doi: 10.1039/C7CE00398F
    [5]
    ARAYA T, CHEN C C, JIA M K, JOHNSON D, LI R P, HUANG Y P. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradiation[J]. Opt Mater, 2017, 64:512-523. doi: 10.1016/j.optmat.2016.11.047
    [6]
    AI L H, ZHANG C H, LI L I, JIANG J. Iron terephthalate metal-organic framework:Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Appl Catal B:Environ, 2014, 148/149:191-200. doi: 10.1016/j.apcatb.2013.10.056
    [7]
    HOU W, YUAN X Z, YAN W, ZENG G M, DONG H R, CHEN X H, LENG J L, WU Z B, PENG L J. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visi-ble-light-driven photocatalysis[J]. Appl Catal B:Environ, 2016, 186:19-29. doi: 10.1016/j.apcatb.2015.12.041
    [8]
    LIANG R W, JING F F, YAN G Y, WU L. Synthesis of CdS-decorated MIL-68(Fe) nanocomposites:Efficient and stable visible light photocatalysts for the selective reduction of 4-nitroaniline to p-phenylenediamine in water[J]. Appl Catal B:Environ, 2017, 218:452-459. doi: 10.1016/j.apcatb.2017.06.075
    [9]
    ZHAO D Q, WANG W W, ZONG W J, XIONG S M, ZHANG Q, JI F Y, XU X. Synthesis of Bi2S3/BiVO4 heterojunction with a one-step hydrothermal method based on pH control and the evaluation of visible-light photocatalytic performance[J]. Materials, 2017, 10(8):891. doi: 10.3390/ma10080891
    [10]
    NALBANDIAN M J, ZHANG M L, SANCHEZ J, CHOA Y H, CWIERTNY D M, MYUNG N V. Synthesis and optimization of BiVO4, and co-catalyzed BiVO4, nanofibers for visible light-activated photocatalytic degradation of aquatic micropollutants[J]. J Mol Catal A:Chem, 2015, 404/405:18-26. doi: 10.1016/j.molcata.2015.04.003
    [11]
    LI J H, ZHAO W, GUO Y, WEI Z B. Facile synthesis and high activity of novel BiVO4/FeVO4, hetero-junction photocatalyst for degradation of metronidazole[J]. Appl Surf Sci, 2015, 351(7):270-279.
    [12]
    ZHOU Z, LI Y, LV K, WU X, LI Q, LUO J. Fabrication of walnut-like BiVO4@Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr (Ⅵ)[J]. Mater Sci Semicond Process, 2018, 75:334-341. doi: 10.1016/j.mssp.2017.11.011
    [13]
    WANG Q Z, NIU T J, WANG L, YAN C X, HUANG J W. FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting[J]. Chem Eng J, 2018, 337:506-514. doi: 10.1016/j.cej.2017.12.126
    [14]
    LIANG R, JING F, SHEN L, QIN N, WU L. MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (Ⅵ) and oxidation of dyes[J]. J Hazard Mater, 2015, 287:364-372. doi: 10.1016/j.jhazmat.2015.01.048
    [15]
    HUANG W Y, LIU N, ZHANG X D, WU M H, TANG L. Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr (Ⅵ) reduction under visible light[J]. Appl Surf Sci, 2017, 425:107-116. doi: 10.1016/j.apsusc.2017.07.050
    [16]
    TIAN N, HUANG H W, He Y, GUO Y X, ZHANG T R, ZHANG Y H. Mediator-free direct Z-scheme photocatalytic system:BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity[J]. Dalton Trans, 2015, 44(9):4297-4307. doi: 10.1039/C4DT03905J
    [17]
    WANG D B, JIA F Y, WANG H, CHEN F, FANG Y, DONG W B, ZENG G M, LI X M, YANG Q, YUAN X Z. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs[J]. J Colloid Interf Sci, 2018, 519:273-284. doi: 10.1016/j.jcis.2018.02.067
    [18]
    MENG X C, LI Z Z, ZHANG Z S. Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity[J]. Chemosphere, 2018, 198:1-12. doi: 10.1016/j.chemosphere.2018.01.070
    [19]
    SUBHAJYOTI S, SANTIMOY K, DEBABRATA P, RAJENDRA S. Acceler-ated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. ACS Sustainable Chem Eng, 2017, 202:165-174.
    [20]
    DONG W F, YANG L Y, HUANG Y M. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing[J]. Talanta, 2017, 167:359-366. doi: 10.1016/j.talanta.2017.02.039
    [21]
    XIA Q, HUANG B B, YUAN X Z, WANG H, WU Z B, JIANG L B, XIONG T, ZHANG J, ZENG G M, WANG H. Modified stannous sulfide nanoparticles with metal-organic framework:Toward efficient and enhanced photocatalytic reduction of chromium (Ⅵ) under visible light[J]. J Colloid Interf Sci, 2018, 530:481-492. doi: 10.1016/j.jcis.2018.05.015
    [22]
    ZHANG C H, AI L H, JIANG J. Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of Bhodamine B under visible light[J]. Ind Eng Chem Res, 2015, 54(1):153-163. doi: 10.1021/ie504111y
    [23]
    CAO J, ZHOU C C, LIN H L, XU B Y, CHEN S F. Surface modification of m -BiVO4, with wide band-gap semi-conductor BiOCl to largely improve the visible light induced photocatalytic activity[J]. Appl Surf Sci, 2013, 284(11):263-269.
    [24]
    VU T A, LE G H, DAO C D, DANG L Q, NGUYEN K T, NGUYEN Q K, DANG P T, TRAN H T K, DUANG Q T, NGUYEN T V, LEE G D. Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent[J]. Rsc Adv, 2015, 5(7):5261-5268. doi: 10.1039/C4RA12326C
    [25]
    APPAVU B, THIRIPURANTHAGAN S, RANGANATHAN S, ERUSAPPAN E, KANNAN K. BiVO4/N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system[J]. Ecotoxicol Environ Safe, 2018, 151:118-126. doi: 10.1016/j.ecoenv.2018.01.008
    [26]
    CHEN R, ZHANG J F, WANG Y, CHEN X F, ZAPIEN J A, LEE C S. Graphitic carbon nitride nanosheet@metal-organic frame work core-shell nanoparticles for photo-chemo combination therapy[J]. Nanoscale, 2015, 7(41):17299-17305. doi: 10.1039/C5NR04436G
    [27]
    DONG X, DING W, ZHANG X, LIANG X. Mechanism and kinetics model of degradation of synthetic dyes by UV-vis/H2O2/Ferrioxalate complexes[J]. Dyes Pigm, 2007, 74(2):470-476. doi: 10.1016/j.dyepig.2006.03.008
    [28]
    HU L X, DENG G H, LU W C, PANG S W, HU X. Deposition of CdS nanoparticles on MIL-53(Fe) metal-organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation[J]. Appl Surf Sci, 2017, 410:401-413. doi: 10.1016/j.apsusc.2017.03.140
    [29]
    JIANG Q, SPEHAR A M, HÅKANSSON M, SUOMI J, ALA-KLEME T, KULMALA S. Hot electron-induced cathodic electrochemilumine scence of rhodamine B at disposable oxide-coated aluminum electrodes[J]. Electrochim Acta, 2006, 51(13):2706-2714. doi: 10.1016/j.electacta.2005.08.004
    [30]
    ZHANG Z, WANG W, SHANG M, YIN W. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO4 photocatalyst[J]. Catal Commun, 2010, 11(11):982-986. doi: 10.1016/j.catcom.2010.04.013
    [31]
    YUAN X Z, WANG H, WU Y, ZENG G M, CHEN X H, LENG L J, WU Z B, LI H. One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity[J]. Appl Organomet Chem, 2016, 30(5):289-296. doi: 10.1002/aoc.v30.5
    [32]
    JI Y, CAO J, JIANG L, ZHANG Y, YI Z. G-C3N4/BiVO4, composites with enhanced and stable visible light photocatalytic activity[J]. J Alloy Compd, 2014, 590(5):9-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (266) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return