Volume 44 Issue 4
Apr.  2016
Turn off MathJax
Article Contents
CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 437-448.
Citation: CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology, 2016, 44(4): 437-448.

Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2

More Information
  • Corresponding author: E-mail: gao_wengui@126.com.
  • Received Date: 2015-10-28
  • Rev Recd Date: 2016-01-25
  • Available Online: 2021-01-23
  • Publish Date: 2016-04-30
  • CuO:ZnO:ZrO2=5:4:1 (molar ratio) catalysts were prepared with CaO doping of 0,1%, 2%, 4%, 8%, 16% (molar fraction) by cocurrent-flow co-precipitation. X-ray diffraction (XRD), thermal analysis(TG-DTG), Fourier infrared (FT-IR), N2 adsorption desorption (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature programmed reduction (H2-TPR), CO2 temperature programmed desorption (CO2-TPD) and NH3 temperature programmed desorption (NH3-TPD) were used to characterize the catalysts. The catalyst activity was evaluated with a lab-made fixed bed reactor. Results show that CaO doping enhances Lewis acid and surface alkaline of the catalyst, increases the amount of high temperature carbonate in the catalysts, improves the thermal stability, reduces the CuO particle size, enhances the synergistic effect of Cu-Zn, increases the Cu specific surface area and the Cu dispersion. The catalyst activity is influenced by the surface acidity, the specific surface area of copper, the synergistic effect of Cu-Zn and the dispersion of copper. When the doping amount of CaO is 2%, the copper specific surface area is 79.3 m2/g, the dispersion degree of copper is 34.8%, the CO2 conversion is 19.01%, the selectivity of methanol is 24.55% and the yield of methanol is 0.044 g/(gcat·h), catalyst activity is the highest. With the amount of CaO increasing, the excessive CaO occupies the catalyst pore and covers the surface active sites, the Lewis acid and the surface alkaline of the catalysts become so strong that the effective contact of CuO and H2 is reduced, CO2 is difficult to desorb, resulting in decrease of catalytic activity. Therefore, the proper doping amount of CaO (2%) can promote the synthesis of methanol through CO2 hydrogenation.
  • loading
  • [1]
    STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Convers Manage, 2005, 46(3): 403-420. doi: 10.1016/j.enconman.2004.03.009
    [2]
    LI L, ZHAO N, WEI W, SUN Y H. A review of research progress on CO2 capture, storage, and utilization in Chinese academy of sciences[J]. Fuel, 2013, 108: 112-130. doi: 10.1016/j.fuel.2011.08.022
    [3]
    ARESTA M, DIBENEDETTO A. Utilization of CO2 as a chemical feedstock: Opportunities and challenges[J]. Dalton Trans, 2007, 28: 2975-2992. https://www.researchgate.net/publication/6216482_Utilisation_of_CO2_as_a_chemical_feedstock_opportunities_and_challenges
    [4]
    SHAMSUL N S, KAMARUDIN S K, RAHMAN N A, KOFLI N T. An overview on the production of bio-methanol as potential renewable energy[J]. Renew Sust Energy Rev, 2014, 33(2): 578-588. https://www.researchgate.net/publication/260758801_An_overview_on_the_production_of_bio-methanol_as_potential_renewable_energy
    [5]
    BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000, 14(12): 751-762. doi: 10.1002/(ISSN)1099-0739
    [6]
    NATESAKHAWAT S, LEKSE J W, BALTRUS J P, OHODNICKI JR P R, HOWARD B H, DENG X Y, MATRANGA C. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J]. ACS Catal, 2012, 2(8): 1667-1676. doi: 10.1021/cs300008g
    [7]
    LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014, 469: 306-311. https://www.researchgate.net/publication/270924206_Development_of_highly_stable_catalyst_for_methanol_synthesis_from_carbon_dioxide
    [8]
    MA Y, SUN Q, WU D, FAN W H, ZHANG Y L, DENG J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998, 171(1): 45-55. doi: 10.1016/S0926-860X(98)00079-9
    [9]
    SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, KOZLOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006, 310(8): 127-137. https://www.researchgate.net/publication/272071371_The_Influence_of_ZnZr_Ratios_on_CuO-ZnO-ZrO2_Catalysts_for_Methanol_Synthesis_from_CO2_Hydrogenation
    [10]
    SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003, 249(1): 129-138. doi: 10.1016/S0926-860X(03)00191-1
    [11]
    BAN H Y, LI C M, ASAMI K J, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014, 54: 50-54. doi: 10.1016/j.catcom.2014.05.014
    [12]
    TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y H, VITIDSANT T, TSUBAKI N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen, 2015, 505: 141-149. doi: 10.1016/j.apcata.2015.08.002
    [13]
    ZHONG C L, GUO X M, MAO D S, WANG S, WU G S, LU G Z. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation[J]. RSC Adv, 2015, 5(65): 52958-52965. doi: 10.1039/C5RA06508A
    [14]
    ELIAS K F M, LUCREDIO A F, ASSAF E M. Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4407-4417. doi: 10.1016/j.ijhydene.2013.01.162
    [15]
    MILLAR G J, HOLM I H, UWINS P J R, DRENNAN J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc Faraday, 1998, 94(4): 593-600. doi: 10.1039/a703954i
    [16]
    BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z Anorg Allg Chem, 2013, 639(15): 2683-2695. doi: 10.1002/zaac.v639.15
    [17]
    LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen, 1996, 137(1): 105-117. doi: 10.1016/0926-860X(95)00284-7
    [18]
    BEHRENS M, GIRGSDIES F, TRUNSCHKE A, SCHLÖGL R. Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic Zincian malachite,rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur J Inorg Chem, 2009, 2009(10): 1347-1357. https://www.researchgate.net/publication/228012859_Minerals_as_Model_Compounds_for_CuZnO_Catalyst_Precursors_Structural_and_Thermal_Properties_and_IR_Spectra_of_Mineral_and_Synthetic_Zincian_Malachite_Rosasite_and_Aurichalcite_and_a_Catalyst_Precursor
    [19]
    BEMS B, SCHUR M, DASSENOY A, JUNKES H, HEREIN D, SCHLÖGL R. relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem Eur J, 2003, 9(9): 2039-2052. doi: 10.1002/chem.200204122
    [20]
    BALTES C, VUKOJEVI S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008, 258(2): 334-344. doi: 10.1016/j.jcat.2008.07.004
    [21]
    ELIAS F, ACHIM S, THILO L, HARALD H, INGO K. The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014, 6(6): 1721-1730. doi: 10.1002/cctc.v6.6
    [22]
    夏王琼, 唐浩东, 林胜达, 岑亚青, 刘化章. 甲醇合成Cu/ZnO催化剂前驱体的物相转变[J]. 催化学报, 2009, 30(9): 879-884. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200909007.htm

    XIA Wang-qiong, TANG Hao-dong, LIN Sheng-da, CEN Ya-qing, LIU Hua-zhang. Precursor phase transition of Cu/ZnO catalyst for methanol synthesis[J]. Chin J Catal, 2009, 30(9): 879-884. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200909007.htm
    [23]
    STOILOVA D, KOLEVA V, VASSILEVA V. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series[J]. Spectrochi Acta A, 2002, 58(9): 2051-2059. doi: 10.1016/S1386-1425(01)00677-1
    [24]
    SONG F E, TAN Y S, XIE H J, ZHANG Q D, HAN Y Z. Direct synthesis of dimethylether from biomass-derived syngas over Cu-ZnO-Al2O3-ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading[J]. Fuel Process Technol, 2014, 126: 88-94.
    [25]
    张强, 徐征, 千载虎. 在CuO-ZnO及CuO-ZnO-ZrO2催化剂上CO2/H2低压合成甲醇的研究[J]. 催化学报, 1989, 10(1): 22-28.

    ZHANG Qiang, XU Zheng, QIAN Zai-hu. The study of low pressure synthesis for methanol from CO2/H2 on CuO-ZnO and CuO-ZnO-ZrO2 catalyst[J]. Chin J Catal, 1989, 10(1): 22-28.
    [26]
    ZHAO H J, LIN M G, FANG K G, ZHOU J, LIU Z Y, ZENG G F, SUN Y H. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015, 5(83): 67630-67637. doi: 10.1039/C5RA13555A
    [27]
    DAI W L, SUN Q, DENG J F, WU D, SUN Y H. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Appl Surf Sci, 2001, 177(3): 172-179. doi: 10.1016/S0169-4332(01)00229-X
    [28]
    GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010, 271(2): 178-185. doi: 10.1016/j.jcat.2010.01.009
    [29]
    BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014, 152-153: 152-161. https://www.researchgate.net/publication/260166753_The_changing_nature_of_the_active_site_of_Cu-Zn-Zr_catalysts_for_the_CO2_hydrogenation_reaction_to_methanol
    [30]
    GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011, 12(12): 1095-1098. doi: 10.1016/j.catcom.2011.03.033
    [31]
    李基涛, 张伟德, 陈明旦, 区泽棠. 铜基催化剂上CO2吸附的TPD和TPSR研究[J]. 天然气化工, 1998, 23(5): 14-17.

    LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, OU Ze-tang. Study of TPD and TPSR of CO2 adsorption on Cu based catalyst[J].Nat gas Chem Eng, 1998, 23(5): 14-17.
    [32]
    HATTORI H. Heterogeneous basic catalysis[J]. Chem Rev, 1995, 95(3): 537-558. doi: 10.1021/cr00035a005
    [33]
    ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008, 350(1): 16-23. doi: 10.1016/j.apcata.2008.07.028
    [34]
    徐友明, 沈本贤, 何金海, 罗锡辉. 用PASCA及NH3-TPD法表征Al2O3载体表面酸度[J]. 分析测试学报, 2006, 25(1): 41-44.

    XU You-ming, SHEN Ben-xian, HE Jin-hai, LUO Xi-hui. Study of surface acidity of γ-Al2O3 support by PASCA and NH3-TPD[J]. J Inst Anal, 2006, 25(1): 41-44.
    [35]
    JUNG K T, BEL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A: Chem, 2000, 163(1/2): 27-42. https://www.researchgate.net/publication/229127074_The_effects_of_synthesis_and_pretreatment_conditions_on_the_bulk_structure_and_surface_properties_of_zirconia
    [36]
    SAMSON K, ŠLIWA M, SOCHA R P, GORA-MAREK K., MUCHA D, RUTKOWSKA-ZBIK D, PAUL J F, RUGGIERO-MIKOLAJCZYK M, GRABOWSKI R, SŁOCZYNKI J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catal, 2014, 4(10): 3730-3741.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (127) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return