Volume 44 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
HUANG Jin-ming, ZHANG Jun-ying, TIAN Chong, ZHANG Shi-bo, ZHAO Yong-chun, ZHENG Chu-guang. Investigation on the transfer-transformation behavior of beryllium during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 648-653.
Citation: HUANG Jin-ming, ZHANG Jun-ying, TIAN Chong, ZHANG Shi-bo, ZHAO Yong-chun, ZHENG Chu-guang. Investigation on the transfer-transformation behavior of beryllium during coal combustion[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 648-653.

Investigation on the transfer-transformation behavior of beryllium during coal combustion

More Information
  • Corresponding author: Tel: 027-87542417, E-mail: jyzhang@hust.edu.cn
  • Received Date: 2015-12-31
  • Rev Recd Date: 2016-03-15
  • Available Online: 2021-01-23
  • Publish Date: 2016-06-10
  • The thermodynamic equilibrium calculation was conducted to estimate the beryllium conversion in the combustion process of coal, and the high temperature vacuum tube furnace was used to research the beryllium compounds reaction with other solid substances and the coal combustion experiments by adding sorbents. X-ray diffraction (XRD), X-ray fluorescence probe (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) were used to reveal the transformation behavior of beryllium during coal combustion. The results indicate that the beryllium only reacts with aluminum compounds and the reaction resultants are BeAl2O4 and BeAl6O10, the solid-solid reaction experiments are in agreement with thermodynamic calculation results, but the actual reaction temperature is about 1000℃, far above the thermodynamic calculation temperature 650℃. Because beryllium reacts with Al2O3 in combustion, the release rate of beryllium in the coal sample added with Al2O3 reduces greatly by up to 33%. Moreover, the inhibition of illite to beryllium release for coal combustion with addition of illite is weaker owing to a higher reaction temperature of illite with beryllium than that of Al2O3. Kaolinite, because its reaction temperature with beryllium is too high, has the lowest inhibition effect.
  • loading
  • [1]
    刘海滨, 姚剑军.铍病发病机制和诊断的研究进展[J].工业卫生与职业病, 1997, 23(4):241-244. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ199704020.htm

    LIU Hai-bin, YAO Jian-jun. The research progress of beryllium disease pathogenesis and diagnosis[J]. Ind Health Occup Dis, 1997, 23(4):241-244. http://www.cnki.com.cn/Article/CJFDTOTAL-GYWZ199704020.htm
    [2]
    PROFUMO A, SPINI G, CUCCA L, PESAVENTO M. Determination of inorganic beryllium species in the particulate matter of emissions and working areas[J]. Talanta, 2002, 57:929-934. doi: 10.1016/S0039-9140(02)00134-0
    [3]
    北巍.环境化学与环境保护[M].长沙:湖南人民出版社, 1976.

    BEI Wei. Environmental Chemistry and Environmental Protection[M]. Changsha:Hunan People's Press, 1976.
    [4]
    ZEVENHOVEN R, KILPINEN P. Control of Pollutants in Flue Gases and Fuel Gases[M]. Espoo:Turku, 2004.
    [5]
    NODELMAN I G, PISUPATI S V, MILLER S F, SCARONI A W. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel[J]. J Hazard Mater, 2000, 74:47-59. doi: 10.1016/S0304-3894(99)00198-3
    [6]
    SWAINE D J. Trace Elements in Coal[M]. London:Butter words, 1990.
    [7]
    U.S.National Committee for Geochemistry. Panel on the Trace Elements Geochemistry of Coal Resource Development Related to Health, Trace Elements Geochemistry of Coal Resource Development Related to Environmental Quality and Health[M]. Washington D C:National Academy Press, 1990.
    [8]
    GB 16297-1996, 大气污染物综合排放标准[S].

    GB 16297-1996, Integrated emission standard of air pollutants[S].
    [9]
    中国国家统计局.中国能源统计年鉴[M].北京:中国统计出版社, 2010-2014.

    National Bureau of Statistics of China. China Energy Statistical Yearbook[M]. Beijing:China Statistics Press, 2010-2014.
    [10]
    NRIAGU J O, PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333:134-139. doi: 10.1038/333134a0
    [11]
    SWAINE D J, GOODARZI F. Environmental Aspects of Trace Elements in Coal[M]. Berlin:Springer, 1995.
    [12]
    郑楚光, 徐明厚, 张军营, 刘晶.燃煤痕量元素的排放与控制[M].湖北:湖北科学技术出版社, 2002.

    ZHENG Chu-guang, XU Ming-hou, ZHANG Jun-ying, LIU Jing. Emissions and Control of Trace Elements from Coal Combustion[M]. Hubei:Hubei Science and Technology Press, 2002.
    [13]
    DAI S F, VLADIMIR V S, COLIN R W, JIANG J H, JAMES C H, SONG X L, JIANG Y F, WANG X B, TATIANA G, LI X, LIU H D, ZHAO L X. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals[J]. Int J Coal Geol, 2014, 121:79-97. doi: 10.1016/j.coal.2013.11.004
    [14]
    白向飞, 李文华, 陈文敏.中国煤中铍的分布赋存特征研究[J].燃料化学学报, 2004, 32(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16706.shtml

    BAI Xiang-fei, LI Wen-hua, CHEN Wen-min. Distribution and modes of occurrence of beryllium in chinese coal[J]. J Fuel Chem Technol, 2004, 32(2):155-159. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16706.shtml
    [15]
    唐修义, 黄文辉.煤中微量元素及其研究意义[J].中国煤田地质, 2002, 14:1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2002S1001.htm

    TANG Xiu-yi, HUANG Wen-hui. Trace elements of coal and its significances on research[J]. Coal Geol Chin, 2002, 14:1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2002S1001.htm
    [16]
    牟保磊.元素地球化学[M].北京:北京大学出版社, 1999.

    MOU Bao-lei. Element Geochemistry[M]. Beijing:Peking University Press, 1999.
    [17]
    WANG J, TOMITA A. A chemistry on the volatility of some trace elements during coal combustion and pyrolysis[J]. Energy Fuels, 2003, 17(4):954-960. doi: 10.1021/ef020251o
    [18]
    GIBBS B M, THOMPAON D, ARGENT B B. Mobilisation of trace elements from as-supplied and additionally cleaned coal:Predictions for Ba, Be, Cd, Co, Mo, Nb, Sb, V and W[J]. Fuel, 2008, 87:1217-1229. doi: 10.1016/j.fuel.2007.06.015
    [19]
    GEORGE A, LARRION M, DUGWELL D, FENNELL P S, KANDIYOTI R. Co-firing of single, binary, and ternary fuel blends:Comparing synergies within trace element partitioning arrived at by thermodynamic equilibrium modeling and experimental measurements[J]. Energy Fuels, 2010, 24:2918-2923. doi: 10.1021/ef100001h
    [20]
    邵靖邦, 邵绪新, 王祖讷.煤中矿物成分对粉煤灰性质的影响[J].煤炭加工与综合利用, 1996, 6:37-41. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJG606.013.htm

    SHAO Jing-bang, SHAO Xu-xin, WANG Zu-ne. The influence of mineral composition on the properties of coal ash[J]. Coal Process Compr Util, 1996, 6:37-41. http://www.cnki.com.cn/Article/CJFDTOTAL-MTJG606.013.htm
    [21]
    [22]
    QUEROL X, LASTUEY A, PLANA F. Trace elements in high-S subbituminous coals from the teruel mining district[J]. Appl Geochem, 1992, 7(5):547-561. https://www.researchgate.net/publication/222345926_Trace_elements_in_high-S_subbituminous_coals_from_the_teruel_Mining_District_northeast_Spain
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return