Volume 48 Issue 4
Apr.  2020
Turn off MathJax
Article Contents
SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 483-489.
Citation: SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 483-489.

Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation

Funds:

the National Natural Science Foundation of China 21808142

More Information
  • Corresponding author: KONG De-jin, kongdj.sshy@sinopec.com; YU Jun, E-mail: yujun@sit.edu.cn
  • Received Date: 2019-11-22
  • Rev Recd Date: 2020-03-09
  • Available Online: 2021-01-23
  • Publish Date: 2020-04-10
  • SiO2 and La2O3-SiO2 were synthesized via sol-gel method and used as support to prepared Rh-La or Rh doped catalysts by iso-volumic impregnation. Effects of doping mode of La on the catalytic performance of Rh/SiO2 for CO hydrogenation are investigated detailedly. The results reveal that the addition of La can improve the dispersion of Rh and increase Rh+ centers, which can effectively inhibit the formation of CO2 and improve the selectivity of oxygenates. Furthermore, the doping mode of La can affect the interaction between La and Rh. A strong La-Rh interaction is achieved over the 2Rh-5La2O3/SiO2 catalyst prepared by co-impregnation of Rh and La with SiO2 support. The strong interaction between La and Rh can efficiently weaken the Rh-CO bonds and enhance the CO insertion reaction in the reaction process, which makes the product dominated by C2+ oxygenates. The 2Rh/5La2O3-SiO2 catalyst prepared via La2O3-SiO2 composite support exhibits a weak La-Rh interaction, and methanol, ethanol and other low-carbon alcohols are obtained as the main products.
  • loading
  • [1]
    陆世维. C1化学-创造未来的化学[M].北京:中国宇航出版社, 1990:1-10.

    LU Shi-wei. C1 Chemistry-Chemistry for the future[M]. Beijing:China aerospace publishing house, 1990:1-10
    [2]
    SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass- derived syngas[J]. Chem Soc Rev, 2007, 36(9):1514-1528. doi: 10.1039/b414039g
    [3]
    AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [4]
    ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019, 48(12):3193-3228. doi: 10.1039/C8CS00502H
    [5]
    WAINAINA S, HORVÁTH I S, TAHERZADEH M J. Biochemicals from food waste and recalcitrant biomass via syngas fermentation:A review[J]. Bioresour Technol, 2018, 248:113-121. http://europepmc.org/abstract/MED/28651875
    [6]
    LIU Y J, ZUO Z J, LI C, DENG X, HUANG W. Effect of preparation method on CuZnAl catalysts for ethanol synthesis from syngas[J]. Appl Surf Sci, 2015, 356:124-127. doi: 10.1016/j.apsusc.2015.08.039
    [7]
    AN Z, NING X, HE J. Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas[J]. J Catal, 2017, 356:157-164. doi: 10.1016/j.jcat.2017.09.020
    [8]
    LI H, ZHANG W, WANG Y, SHUI M, SUN S, BAO J, GAO C. Nanosheet-structured K-Co-MoS2 catalyst for the higher alcohol synthesis from syngas:Synthesis and activation[J]. J Energy Chem, 2019, 30:57-62. doi: 10.1016/j.jechem.2018.03.019
    [9]
    XU D, ZHANG H, MA H, QIAN W, YING W. Effect of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas[J]. Catal Commun, 2017, 98:90-93. doi: 10.1016/j.catcom.2017.03.019
    [10]
    LAN G, YAO Y, ZHANG X, GUO M, TANG H, LI Y, YANG Q. Improved catalytic performance of encapsulated Ru nanowires for aqueous-phase Fischer-Tropsch synthesis[J]. Catal Sci Technol, 2016, 6(7):2181-2187. doi: 10.1039/C5CY01027F
    [11]
    HAN L, MAO D, YU J, GUO Q, LU G. C2-oxygenates synthesis through CO hydrogenation on SiO2-ZrO2 supported Rh-based catalyst:The effect of support[J]. Appl Catal A:Gen, 2013, 454:81-87. doi: 10.1016/j.apcata.2013.01.008
    [12]
    ZHANG R, DUAN T, WANG B, LING L. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion:A theoretical study[J]. Appl Surf Sci, 2016, 379:384-394. doi: 10.1016/j.apsusc.2016.04.106
    [13]
    ZHANG R, PENG M, WANG B. Catalytic selectivity of Rh/TiO2 catalyst in syngas conversion to ethanol:Probing into the mechanism and functions of TiO2 support and promoter[J]. Catal Sci Technol, 2017, 7(5):1073-1085. doi: 10.1039/C6CY02350A
    [14]
    ZHANG L, BALL M R, LIU Y, KUECH T F, HUBER G W, MAVRIKAKIS M, DUMESIC J A. Synthesis gas conversion over Rh/Mo catalysts prepared by atomic layer deposition[J]. ACS Catal, 2019, 9(3):1810-1819. doi: 10.1021/acscatal.8b04649
    [15]
    YIN H, DING Y, LUO H, ZHU H, HE D, XIONG J, LIN L. Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation[J]. Appl Catal A:Gen, 2003, 243(1):155-164. doi: 10.1016/S0926-860X(02)00560-4
    [16]
    YANG N, YOO J S, SCHUMANN J, BOTHRA P, SINGH J A, VALLE E, BENT S F. Rh-MnO interface sites formed by atomic layer deposition promote syngas conversion to higher oxygenates[J]. ACS Catal, 2017, 7(9):5746-5757. doi: 10.1021/acscatal.7b01851
    [17]
    PONEC V. Chapter 4 selectivity in the syngas reactions:The role of supports and promoters in the activation of Co and in the stabilization of intermediates[J]. Stud Surf Sci Catal, 1991, 64:117-157. doi: 10.1016/S0167-2991(08)60946-5
    [18]
    OJEDA M, GRANADOS M L, ROJAS S, TERREROS P, GARCÍA-GARCÍA F J, FIERRO J L G. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas effect of manganese loading[J]. Appl Catal A:Gen, 2004, 261(1):47-55. doi: 10.1016/j.apcata.2003.10.033
    [19]
    MO X, GAO J, GOODWIN Jr J G. Role of promoters on Rh/SiO2 in CO hydrogenation:A comparison using DRIFTS[J]. Catal Today, 2009, 147(1):139-149. https://www.sciencedirect.com/science/article/pii/S0920586109000406
    [20]
    MO X, GAO J, UMNAJKASEAM N, GOODWIN Jr J G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation:Effect on adsorption and reaction[J]. J Catal, 2009, 267(1):167-176.
    [21]
    BURCH R, PETCH M I. Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on the supported rhodium catalysts[J]. Appl Catal A:Gen, 1992, 88(1):39-60. doi: 10.1016/0926-860X(92)80195-I
    [22]
    GOGATE M R, DAVIS R J. X-ray absorption spectroscopy of an Fe-promoted Rh/TiO2 catalyst for synthesis of ethanol from synthesis gas[J]. ChemCatChem, 2009, 1(2):295-303. doi: 10.1002/cctc.200900104
    [23]
    LEDFORD J S, HOUALLA M, PROCTOR A, HERCULES D M, PETRAKIS L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts[J]. J Phys Chem, 1989, 93(18):6770-6777. doi: 10.1021/j100355a039
    [24]
    HANAOKA T, ARAKAWA H, MATSUZAKI T, SUGI Y, KANNO K, ABE Y. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts[J]. Catal Today, 2000, 58(4):271-280. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ021076968/
    [25]
    ARAKAWA H, TAKEUCHI K, MATSUZAKI T. Effect of metal dispersion on the activity and selectivity of Rh/SiO2 catalyst for high pressure CO hydrogenation[J]. Chem Lett, 1984, 13:1607-1610. doi: 10.1246/cl.1984.1607
    [26]
    GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, GVEMEZ M B, BENNICI S, AUROUX A, ARIAS P L. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1, 3-propanediol[J]. J Catal, 2015, 323:65-75. doi: 10.1016/j.jcat.2014.12.028
    [27]
    GARCÍA-FERNÁNDEZ S, GANDARIAS I, TEJIDO-N'UÑEZ Y, REQUIES J, ARIAS P L. Influence of the support of bimetallic platinum tungstate catalysts on 1, 3-propanediol formation from glycerol[J]. ChemCatChem, 2017, 9(24):4508-4519. doi: 10.1002/cctc.201701067
    [28]
    GUO S L, ARAI M, NISHIYAMA Y. Activation of a silica-supported nickel catalyst through surface modification of the support[J]. Appl Catal, 1990, 65(1):31-44. doi: 10.1016/S0166-9834(00)81586-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (130) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return