Volume 47 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
LAN Mei-chen, SHEN Bo-xiong, WANG Jian-qiao, ZHAO Peng. Performance of activated carbon supported nickel catalysts in the pyrolysis of waste plastics to produce carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1313-1319.
Citation: LAN Mei-chen, SHEN Bo-xiong, WANG Jian-qiao, ZHAO Peng. Performance of activated carbon supported nickel catalysts in the pyrolysis of waste plastics to produce carbon nanotubes[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1313-1319.

Performance of activated carbon supported nickel catalysts in the pyrolysis of waste plastics to produce carbon nanotubes

Funds:

the Natural Science Foundation of Tianjin 18JCZDJC39800

Major Science and Technology Special Projects in Tianjin 18ZXSZSF00040

Tianjin Science Popularization Project 18KPXMSF00080

Tianjin Science and Technology Special Project 18PTZWHZ00010

Hebei Postgraduate Innovation Subsidy Project CXZZBS2019035

More Information
  • Corresponding author: SHEN Bo-xiong, E-mail:shenbx@hebut.edu.cn
  • Received Date: 2019-08-29
  • Rev Recd Date: 2019-09-25
  • Available Online: 2021-01-23
  • Publish Date: 2019-11-10
  • A series of Ni based catalysts are prepared through impregnation method with coconut shell, bamboo charcoal and charcoal activated carbons as the support; their catalytic performance in the pyrolysis of waste plastics to produce carbon nanotubes was comparatively investigated. The structure and morphology of the catalyst and carbon nanotubes were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectroscopy, thermogravimetric analysis and nitrogen physisorption. The results show that carbon nanotubes with the highest yield and the best quality can be produced by using the nickel catalyst supported on coconut shell activated carbon (Ni/CSAC). In addition, the effect of reaction temperature and nickel loading on the catalytic performance of Ni/CSAC in the pyrolysis of waste plastics was considered.
  • loading
  • [1]
    董欣.废弃塑料治理: 能源化利用或成突破口[N].中国能源报, 2018-06-11(19).

    DONG Xin. Waste plastics treatment: Energy utilization maybe become breakthrough[N]. China Energy Daily, 2018-06-11(19).
    [2]
    TRIPATHI P K, DURBACH S, COVILLE N J. Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst[J]. Nanomaterials, 2017, 7(10):284-292. doi: 10.3390/nano7100284
    [3]
    MOO J G S, VEKSHA A, OH W D, GIANNIS A, UDAYANGA W D C, LIN S X, GE L Y, LISAK G. Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction:Effects of plastic feedstock and synthesis temperature[J]. Electrochem Commun, 2019, 101:11-18. doi: 10.1016/j.elecom.2019.02.014
    [4]
    张凌.碳纳米管薄膜的光学性质与应用[D].北京: 清华大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10003-1018876558.htm

    ZHANG Ling. The optical properties and applications of carbon nanotube film[D]. Beijing: University of Tsinghua, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10003-1018876558.htm
    [5]
    LIU X T, SHEN B X, WU Z T, PARLETT C M A, HAN Z N, GEORGE A, YUAN P, PATEL D, WU C F. Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst[J]. Chem Eng Sci, 2018, 192:882-891. doi: 10.1016/j.ces.2018.07.047
    [6]
    HUH Y, GREEN M L H, KIM Y H, KIM Y H, LEE J Y, LEE C J. Control of carbon nanotube growth using cobalt nanoparticles as catalyst[J]. Appl Surf Sci, 2005, 249(1/4):145-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d02df638cef52d9a5767caf2f131967e
    [7]
    MHLANGA S D, MONDAL K C, CARTER R, WITCOMB M J, COVILLE N J. The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts[J]. S Afr J Chem, 2009, 65(14):39-49. https://www.ajol.info/index.php/sajc/article/viewFile/123210/112750
    [8]
    YAO D D, WU C F, YANG H P, ZHANG Y S, NAHIL M A, CHEN Y Q, WILLIAMS P T, CHEN H P. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Convers Manage, 2017, 148:692-700. doi: 10.1016/j.enconman.2017.06.012
    [9]
    LIU X T, ZHANG Y S, NAHIL M A, WILLIAMS P T, WU C F. Development of Ni-and Fe-based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics[J]. J Anal Appl Pyrolysis, 2017, 125:32-39. doi: 10.1016/j.jaap.2017.05.001
    [10]
    SIVAKUMAR V M, ABDULLAH A Z, MOHAMED A R, CHAI S P. Optimized parameters for carbon nanotubes synthesis over Fe and Ni catalysts VIA methane CVD[J]. Rev Adv Mater Sci, 2011, 27(1):25-30. https://www.researchgate.net/publication/267404270_Optimized_parameters_for_carbon_nanotubes_synthesis_over_Fe_and_Ni_catalysts_VIA_methane_CVD
    [11]
    ACOMB J C, WU C, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Appl Catal B:Environ, 2016, 180(894):497-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59c503b0daa6ee1842f8cb506310558f
    [12]
    郑扬帆, 王军凯, 李赛赛, 宋健波, 张海军.高分子塑料催化裂解制备碳纳米管的研究进展[J].耐火材料, 2018, 52(4):304-309+314. doi: 10.3969/j.issn.1001-1935.2018.04.016

    ZHENG Yang-fan, WANG Jun-kai, LI Sai-sai, SONG Jian-bo, ZHANG Hai-jun. Research progress in preparaton of carbon nanotubes bu catalytic pyrolysis of polymer plastics[J]. Refractories, 2018, 52(4):304-309+314. doi: 10.3969/j.issn.1001-1935.2018.04.016
    [13]
    JIANG Z W, SONG R J, BI W G, LU J, TANG T. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion[J]. Carbon, 2007, 45(2):449-458. doi: 10.1016/j.carbon.2006.08.012
    [14]
    张立剑.基于活性炭的高级还原体系构建及去除水中Cr(Ⅵ)污染效能研究[D].长春: 吉林大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10183-1019001331.htm

    ZHANG Li-jian. Expermental study on construction of advanced reduction system and removal of Cr(Ⅵ)from wastewater based on activated carbon[D]. Changchun: University of Jilin, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10183-1019001331.htm
    [15]
    GONZÁLEZ Y S, COSTA C, MARQUEZ M C, RAMOS P. Thermal and catalytic degradation of polyethylene wastes in the presence of silica gel, 5A molecular sieve and activated carbon[J]. J Hazard Mater, 2011, 187(1/3):101-112. http://cn.bing.com/academic/profile?id=1b02404e36579753fa91d7b93b497680&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    GONG J, LIU J, JIANG Z W, WEN X, CHEN X C, MIJOWSKA E, WANG Y H, TANG T. Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes[J]. Chem Eng J, 2013, 225(6):798-808. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b81c3b88564021f6c05b63b2fba67efc
    [17]
    GONG J, LIU J, WAN D, CHEN X C, WEN X, MIJOWSKA E, JIANG ZW, WANG Y H, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A:Gen, 2012, 449(1):112-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a228c7dac18d7634f348543f545356c6
    [18]
    FUERTES A B, ALVAREZ S. Graphitic mesoporous carbons synthesised through mesostructured silica templates[J]. Carbon, 2004, 42(15):3049-3055. doi: 10.1016/j.carbon.2004.06.020
    [19]
    LIOU T H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chem Eng J, 2010, 158(2):129-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3892d5252eb81d725b4c6137ac12c1b2
    [20]
    WAN H Z, LI L, CHEN Y, GONG J L, DUAN M Q, LIU C, ZHANG J, WANG H. One pot synthesis of Ni12P5 hollow nanocapsules as efficient electrode materials for oxygen evolution reactions and supercapacitor applications[J]. Electrochim Acta, 2017, 229:380-386. doi: 10.1016/j.electacta.2017.01.169
    [21]
    HUANG Z P, CHEN Z B, CHEN Z Z, LV C C, MENG H, ZHANG C. Ni12P5 Nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis[J]. ACS Nano, 2014, 8(8):8121-8129. doi: 10.1021/nn5022204
    [22]
    ABOUL-ENEIN A A, AWADALLAH A E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chem Eng J, 2018, 354:802-816. doi: 10.1016/j.cej.2018.08.046
    [23]
    GONG J, LIU J, WAN D, CHEN X C, WEN X, MIJOWSKA E, JIANG Z W, WANG Y H, TANG T. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Appl Catal A:Gen, 2012, 449:112-20. doi: 10.1016/j.apcata.2012.09.028
    [24]
    LIU X T, SUN H M, WU C F, PATEL D, HUANG J. Thermal chemical conversion of high-density polyethylene for the production of valuable carbon nanotubes using Ni/AAO membrane catalyst[J]. Energy Fuels, 2018, 32(4):4511-4520. doi: 10.1021/acs.energyfuels.7b03160
    [25]
    DANAFAR F, FAKHRU'L-RAZI A, SALLEH M A M, BIAK D R A. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review[J]. Chem Eng J, 2009, 155(1/2):37-48. http://cn.bing.com/academic/profile?id=5d157aba80fa132f0df1384aecc617c9&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (116) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return