Volume 44 Issue 5
May  2016
Turn off MathJax
Article Contents
LI Rui-lian, DU Mei-fang, WU Xiao-jiang, XU Lu-xia, ZHANG Zhong-xiao. Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal: A quantum chemistry and experimental study[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 513-520.
Citation: LI Rui-lian, DU Mei-fang, WU Xiao-jiang, XU Lu-xia, ZHANG Zhong-xiao. Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal: A quantum chemistry and experimental study[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 513-520.

Effect of kaolin on the ash fusion characteristics of high alkali Zhundong coal: A quantum chemistry and experimental study

Funds:

the National Natural Science Foundation of China 51276212

  • Received Date: 2015-08-25
  • Rev Recd Date: 2016-01-19
  • Available Online: 2021-01-23
  • Publish Date: 2016-05-10
  • The effect of kaolin on the ash fusion characteristics of high alkali Xinjiang Zhundong coal was investigated by quantum chemistry calculation and experimental measurement methods. The results show that the ash fusion temperature is increased significantly by adding kaolinite; the ash fusion temperature increases rapidly at first with the increase of kaolinite content added in the Zhundong coal and then levels off when the fraction of kaolinite exceeds 10%. By adding kaolin in the Zhundong coal, the content of minerals with a low melting point (1 100-1 200 ℃), such as anorthite and anhydrite, is reduced, whereas mullite is found at 1 200-1 300 ℃. O (26), Si (6), O (22) and Si (8) atoms in the kaolinite molecular structure exhibit relatively high reactivity; Al-O bond, which is connected with O (26) and O (22), can be ruptured by reacting with Fe2+ or other metal ions in ash as an electrophilic reagent. The O2- of alkali oxides in ash, such as Na2O and CaO, can react as a nucleophilic reagent with Si (6) and Si (8) in kaolinite, breaking the oxygen bridge bond of Si-O-Si in kaolinite.
  • loading
  • [1]
    杨忠灿, 刘家利, 何红光.新疆准东煤特性研究及其锅炉选型[J].热力发电, 2010, 39(8): 38-40. http://www.cnki.com.cn/Article/CJFDTOTAL-RLFD201008013.htm

    YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gen, 2010, 39(8): 38-40. http://www.cnki.com.cn/Article/CJFDTOTAL-RLFD201008013.htm
    [2]
    ZHOU J B, ZHUANG X G, ALASTUEY A, QUEROLD X, LI J H. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. Int J Coal Geol, 2010, 82(1): 51-67. https://www.researchgate.net/publication/238379445_Geochemistry_and_mineralogy_of_coal_in_the_recently_explored_Zhundong_large_coal_field_in_the_Junggar_basin_Xinjiang_province_China
    [3]
    范建勇.准东煤结渣特性及其配煤灰熔融性试验研究[D].杭州:浙江大学, 2014. http://cn.bing.com/academic/profile?id=5196f1c98871c2d7cf78821122ac2fd4&encoded=0&v=paper_preview&mkt=zh-cn

    FAN Jian-yong. Experimental research about Zhundong coal slagging characteristics and its coal blending ash fusion[D]. Hangzhou: Zhejiang University, 2014. http://cn.bing.com/academic/profile?id=5196f1c98871c2d7cf78821122ac2fd4&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    岑可法, 樊建人, 池作和, 沈珞婵.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社, 1993: 237-265.

    CEN Ke-fa, FAN Jian-ren, CHI Zuo-he, SHEN Luo-chan. Boiler and Heat Exchanger Product Ash, Slag, Wear and Corrosion Prevention Principle and Calculation[M]. Beijing: Science Press, 1993: 237-265.
    [5]
    姜英.动力煤和动力配煤[M].北京:化学出版社, 2011: 65-67.

    JIANG Ying. Power Coal and Power Coal Blending[M]. Beijing: Chemical Industry Press, 2011: 65-67.
    [6]
    王勤辉, 景妮洁, 骆仲泱, 李小敏, 揭涛.灰成分影响煤灰烧结温度的实验研究[J].煤炭学报, 2010, 35(6): 1015-1020. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006035.htm

    WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. J China Coal Soc, 2010, 35(6): 1015-1020. http://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201006035.htm
    [7]
    杨建国, 邓芙蓉, 赵虹, 岑可法.煤灰熔融过程中的矿物演变及其对灰熔点的影响[J].中国电机工程学报, 2006, 26(17): 122-126. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200617021.htm

    YANG Jian-guo, DENG Fu-rong, ZHAO Hong, CEN Ke-fa. Mineral conversion of coal-ash in fusing process and the influence to ash fusion point[J]. Proc CSEE, 2006, 26(17): 122-126. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200617021.htm
    [8]
    唐黎华, 王福明, 朱学栋, 吴勇强, 朱子彬.煤焦中矿物质行为与灰熔融温度的关系[J].华东理工大学学报, 2003, 29(3): 243-247. http://www.oalib.com/references/19425655

    TANG Li-hua, WANG Fu-ming, ZHU Xue-dong, ZHU Zi-bin. Relationship between mineral behavior in coke and ash melting temperature[J]. J East China Univ Sci Technol, 2003, 29(3): 243-247. http://www.oalib.com/references/19425655
    [9]
    代百乾, 乌晓江, 陈玉爽, 张忠孝.煤灰熔融行为及其矿物质作用机制的量化研究[J].动力工程学报, 2014, 34(1): 70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201401012.htm

    DAI Bai-qian, WU Xiao-jiang, CHEN Yu-shuang, ZHANG Zhong-xiao. Experimental study and quantum chemistry calculation on coal ash fusion characteristics and mineral reaction mechanism[J]. J Chin Soc Power Eng, 2014, 34(1): 70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201401012.htm
    [10]
    LINJEWILE T M, MANZOORI A R. Role of additives in controlling agglomeration and defluidization during fluidized bed combustion of high-sodium, high-sulphur low-rank coal[J]. Eng Fund Conf, 2007, 11: 2-7. doi: 10.1007/0-306-46920-0_24
    [11]
    李洁, 杜梅芳, 闫博, 张忠孝.添加硼砂助熔剂煤灰熔融性的量子化学与实验研究[J].燃料化学学报, 2008, 36(5): 519-523. doi: 10.1016/S1872-5813(08)60032-8

    LI Jie, DU Mei-fang, YAN Bo, ZHANG Zhong-xiao. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. J Fuel Chem Technol, 2008, 36(5): 519-523. doi: 10.1016/S1872-5813(08)60032-8
    [12]
    洪汉烈, 铁丽云, 闵新民, 肖睿娟, 周泳, 边秋娟.高岭石矿物表面化学的量子化学研究[J].武汉理工大学学报, 2005, 27(1): 25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200501008.htm

    HONG Han-lie, TIE Li-yun, MIN Xin-min, XIAO Rui-juan, ZHOU Yong, BIAN Qiu-juan. Surface chemistry of kaolinite by quantum chemistry calculations[J]. J Wuhan Univ Technol, 2005, 27(1): 25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200501008.htm
    [13]
    FORESMAN J B, FRISCH A. Exploring chemistry with electronic structure methods (2nd ed). Gaussian, Inc, Pittsburg, PA, 1996.
    [14]
    陈玉爽, 张忠孝, 乌晓江, 李洁, 管荣清, 闫博.配煤对煤灰熔融特性影响的实验与量化研究[J].燃料化学学报, 2009, 37(5): 521-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17485.shtml

    CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characteristics of blend coal[J]. J Fuel Chem Technol, 2009, 37(5): 521-526. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17485.shtml
    [15]
    PARR R G, YANG W. Density Functional approach to the frontier-electron theory of chemical reactivity[J]. J Am Chem Soc, 1984, 106: 4049-4050. doi: 10.1021/ja00326a036
    [16]
    付蓉, 卢天, 陈飞武.亲电取代反应中活性位点预测方法的比较[J].物理化学学报, 2014, 30(4): 628-639. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201404004.htm

    FU Rong, LU Tian, CHEN Fei-wu. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Phys-Chim Sin, 2014, 30(4): 628-639. http://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201404004.htm
    [17]
    NNABUK O E, STANISLAV R S, ENO E E. Fluoroquinolones as corrosion inhibitors for mild steel in acidic medium; experimental and theoretical studies[J]. Int J Electrochem Sci, 2010, 5: 1127-1150. https://www.researchgate.net/publication/228507114_Fluoroquinolones_as_Corrosion_Inhibitors_for_Mild_Steel_in_Acidic_Medium_Experimental_and_Theoretical_Studies
    [18]
    STOYANOV S R, GUSAROV S, KUZNICKI M S, KOVALENKO A. Theoretical modeling of zeolite nanoparticle surface acidity for heavy oil upgrading[J]. J Phys Chem, 2008, 112(17): 6794-6810. doi: 10.1021/jp075688h
    [19]
    STOYANOV S R, GUSAROV S, KOVALENKO A. Modelling of thiophene and benzene adsorption on Cu2+ and Ag+ exchanged chabazite surface. In 'Theoretical Aspect of Catalysis'. Eds. G.Vayssilov and T. Mineva; Heron press, Sofia, Bulgaria, 2008.
    [20]
    YANG W, MORTIER W J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines[J]. J Am Chem Soc, 1986, 108(19): 5708-5711. doi: 10.1021/ja00279a008
    [21]
    BRINDLEY G W, ROBINSON K. The structure of kaolinite[J]. Miner Mag, 1946, 31: 781-786. http://www.minersoc.org/pages/Archive-MM/Volume_27/27-194-242.htm
    [22]
    PERDEW J P. Unified theory of exchange and correlation beyond the local density approximation. Ziesche P, Esching H. Electronic Structure of Solids' 91.Berlin, Akademic Verlag, 1991: 11-20.
    [23]
    PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244-13249. doi: 10.1103/PhysRevB.45.13244
    [24]
    WANG Y, PERDEW J P. Spin scaling of the electron-gas correlation energy in the high-density limit[J]. Phys Rev B, 1991, 43(11): 8911-8916. doi: 10.1103/PhysRevB.43.8911
    [25]
    POLITZER P, MURRAY J S. The electrostatic potential as a guide to molecular interactive behavior[C]// In Chemical Reactivity Theory: A Density Functional View. CRC Press: Boca Raton, 2009.
    [26]
    MICHAELIAN K H, YARIV S, NASSER A. Study of the interaction between caesium bromide and kaolinite by photoacoustic and fiffuse reflectance infrared spectroscopy[J]. Can J Chem, 1991, 69: 749-754. doi: 10.1139/v91-110
    [27]
    张利孟, 董信光, 刘科, 谭厚章, 王学斌, 魏博.高岭土对准东煤结渣特性及矿物质演变的影响[J].燃料化学学报, 2015, 43(10): 1176-1181. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18706.shtml

    ZHANG Li-meng, DONG Xin-guang, LIU Ke, TAN Hou-zhang, WANG Xue-bin, WEI Bo. Effect of kaolin on ash slagging and mineral conversion of Zhundong coal[J]. J Fuel Chem Technol, 2015, 43(10): 1176-1181. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18706.shtml
    [28]
    马永静.矿物学角度研究添加剂对煤灰熔融性的作用及其机理[D].太原:太原理工大学, 2009.

    MA Yong-jing. Study the Effect of additives on the fusibility of coal ash and its mechanism from a mineralogical point of view[D]. Taiyuan: Taiyuan University of Technology, 2009.
    [29]
    沈铭科, 邱坤赞, 黄镇宇, 王智化, 刘建忠.准东煤掺烧高岭土对固钠率及灰熔融特性影响研究[J].燃料化学学报, 2015, 43(9): 1044-1051. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18688.shtml

    SHEN Ming-ke, QIU Kun-zan, HUANG Zhen-yu, WANG Zhi-hua, LIU Jian-zhong. Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J Fuel Chem Technol, 2015, 43(9): 1044-1051. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18688.shtml
    [30]
    KYI S, CHADWICK B L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion[J]. Fuel, 1999, 78(7): 845-855. doi: 10.1016/S0016-2361(98)00205-1
    [31]
    李勇, 肖军.燃煤过程中碱金属赋存迁移规律及相关研究进展[J].洁净煤技术, 2005, 11(1): 39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS20050100A.htm

    LI Yong, XIAO Jun. The occurrence and migration mechanism of alkali metal during coal-fired process and research progress[J]. Clean Coal Technol, 2005, 11(1): 39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JJMS20050100A.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return