Volume 48 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.
Citation: YE Yu-ling, FU Meng-qian, CHEN Hong-lin, ZHANG Xiao-ming. Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 311-320.

Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde

Funds:

The project was supported by the National Key R & D Program of China 2018YFB0604902

More Information
  • Corresponding author: CHEN Hong-lin, E-mail: hlchen@cioc.ac.cn
  • Received Date: 2020-01-20
  • Rev Recd Date: 2020-03-09
  • Available Online: 2021-01-23
  • Publish Date: 2020-03-10
  • ZSM-5 zeolite is considered as an effective catalyst in the synthesis of trioxane from formaldehyde. In this work, a series of ZSM-5 zeolites with different SiO2/Al2O3 molar ratios were used in the synthesis of trioxane from formaldehyde; through characterization by XRF, XRD, SEM, NH3-TPD, Py-FTIR and 27Al MAS NMR, the effect of acidity including the Brønsted and Lewis acid sites on the catalytic performance of ZSM-5 zeolites in the trioxane synthesis was investigated. The results indicate that the ZSM-5-250 zeolite with a SiO2/Al2O3 molar ratio of 250 exhibits excellent catalytic performance in the synthesis of trioxane. The ZSM-5-250 zeolite owns sufficient amount of Brønsted acid sites which are active for the synthesis of formaldehyde to trioxane; meanwhile, it has few Lewis acid sites and can then effectively inhibit various side-reactions like the Cannizzaro or Tishchenko reactions. Moreover, the ZSM-5-250 zeolite displays high stability with a single-pass lifetime of 114 h and can be regenerated easily through calcination at 550℃.
  • loading
  • [1]
    MU Y B, JIA M C, JIANG W, WAN X B. A novel branched polyoxymethylene synthesized by cationic copolymerization of 1, 3, 5-Trioxane with 3-(Alkoxymethyl)-3-ethyloxetane[J]. Macromol Chem Phys, 2013, 214(23):2752-2760. doi: 10.1002/macp.201300473
    [2]
    HOFFMANN M, BIZZARRI C, LEITNER W, MULLER T E. Reaction pathways at the initial steps of trioxane polymerisation[J]. Catal Sci Technol, 2018, 8(21):5594-5603. doi: 10.1039/C8CY01691G
    [3]
    WU Q, LI W, WANG M, HAO Y, CHU T, SHANG J, LI H, ZHAO Y, JIAO Q. Synthesis of polyoxymethylene dimethyl ethers from methylal and trioxane catalyzed by bronsted acid ionic liquids with different alkyl groups[J]. Rsc Adv, 2015, 5(71):57968-57974. doi: 10.1039/C5RA08360E
    [4]
    BARANOWSKI C J, BAHMANPOUR A M, KROCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review[J]. Appl Catal B:Environ, 2017, 217:407-420. doi: 10.1016/j.apcatb.2017.06.007
    [5]
    ROESSLER D G-U S-S V. Procédé de préparation du trioxanne: FR1374872[P]. 1964-10-09.
    [6]
    BALASHOV A L, KRASNOV V L, DANOV S M, CHERNOV A Y, SULIMOV A V. Formation of cyclic oligomers in concentrated aqueous solutions of formaldehyde[J]. J Struct Chem, 2001, 42(3):398-403. doi: 10.1023/A:1012408904389
    [7]
    GRUTZNER T, HASSE H. Solubility of formaldehyde and trioxane in aqueous solutions[J]. J Chem Eng Data, 2004, 49(3):642-646. doi: 10.1021/je030243h
    [8]
    MAIWALD M, GRUTZNER T, STROFER E, HASSE H. Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference:Chemical equilibria and reaction kinetics of formaldehyde-water-1, 3, 5-trioxane[J]. Anal Bioanal Chem, 2006, 385(5):910-917. doi: 10.1007/s00216-006-0477-3
    [9]
    GRUTZNER T, HASSE H, LANG N, SIEGERT M, STROFER E. Development of a new industrial process for trioxane production[J]. Chem Eng Sci, 2007, 62(18/20):5613-5620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c8116edc13beb3c962f260091caa44b2
    [10]
    MASAMOTO J, HAMANAKA K, YOSHIDA K, NAGAHARA H, KAGAWA K, IWAISAKO T, KOMAKI H. Synthesis of trioxane using heteropolyacids as catalyst[J]. Angew Chem-Int Ed, 2000, 39(12):2102-2104. doi: 10.1002/1521-3773(20000616)39:12<2102::AID-ANIE2102>3.0.CO;2-E
    [11]
    XIA C, TANG Z, CHEN J, ZHANG X, LI Z, GUO E. Method of synthesizing trioxymethylene from formaldehyde by the catalytic action of an ionic liquid: US7244854B2[P]. 2007-07-17.
    [12]
    ZHAO Y M, HU Y F, QI J G, MA W T. Bronsted-acidic ionic liquids as catalysts for synthesizing trioxane[J]. Chin J Chem Eng, 2016, 24(10):1392-1398. doi: 10.1016/j.cjche.2016.05.001
    [13]
    ARIAS-UGARTE R, WEKESA F S, FINDLATER M. Selective aldol condensation or cyclotrimerization reactions catalyzed by FeCl3[J]. Tetrahedron Lett, 2015, 56(19):2406-2411. doi: 10.1016/j.tetlet.2015.03.040
    [14]
    KIEDIK M, KRUEGER A. Synthesis of trioxane in presence of sulfuric acid and ion-exchange resins as catalyst-comparisons of methods[J]. Przem Chem, 1990, 69(12):539-540.
    [15]
    DINTZNER M R, MONDJINOU Y A, PILEGGI D J. Montmorillonite clay-catalyzed cyclotrimerization and oxidation of aliphatic aldehydes[J]. Tetrahedron Lett, 2010, 51(5):826-827. doi: 10.1016/j.tetlet.2009.12.009
    [16]
    LEE S O, KITCHIN S J, HARRIS K D M, SANKAR G, DUGAL M, THOMAS J M. Acid-catalyzed trimerization of acetaldehyde:A highly selective and reversible transformation at ambient temperature in a zeolitic solid[J]. J Phys Chem B, 2002, 106(6):1322-1326. doi: 10.1021/jp012440y
    [17]
    MORI H, YAMAZAKI T, OZAWA S, OGINO Y. Liquid-phase reaction of acetaldehyde over various ZSM-5 zeolites[J]. Bull Chem Soc Jpn, 1993, 66(9):2498-2504. doi: 10.1246/bcsj.66.2498
    [18]
    YE Y, YAO M, CHEN H X Z. Influence of silanol defects of ZSM-5 zeolites on trioxane synthesis from formaldehyde[J]. Catal Lett, 2020, 150(5):1445-1453. doi: 10.1007/s10562-019-03040-x
    [19]
    ISHIDA H, AKAGISHI K. The synthetic reaction of trioxane from formalin on the zeolite catalysts[J]. Nippon Kagaku Kaishi, 1996, (3):290-297. doi: 10.1246/nikkashi.1996.290
    [20]
    FU M, YE Y, LEI Q, CHEN H, ZHANG X. Research on the synthetic 1, 3, 5-trioxane over ZSM-5 zeolite[J]. Chin J Synthetic Chem, 2020.
    [21]
    RODRIGUEZ-GONZALEZ L, SIMON U. NH3-TPD measurements using a zeolite-based sensor[J]. Meas Sci Technol, 2010, 21(2):7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7d75fb6d8163b3d5a966dc39356c3248
    [22]
    DIEZ V K, APESTEGUIA C R, DI COSIMO J I. Synthesis of ionones on solid Bronsted acid catalysts:Effect of acid site strength on ionone isomer selectivity[J]. Catal Today, 2010, 149(3/4):267-274. http://cn.bing.com/academic/profile?id=2a11d96941d8d53a28a121efa8e30947&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    WU W Q, WEITZ E. Modification of acid sites in ZSM-5 by ion-exchange:An in-situ FT-IR study[J]. Appl Surf Sci, 2014, 316:405-415. doi: 10.1016/j.apsusc.2014.07.194
    [24]
    JIN F, LI Y D. A FT-IR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule[J]. Catal Today, 2009, 145(1/2):101-107. https://www.sciencedirect.com/science/article/pii/S092058610800271X
    [25]
    ISERNIA L F. FT-IR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite[J]. Mater Res-Ibero-Am J, 2013, 16(4):792-802.
    [26]
    RODRIGUEZ-GONZALEZ L, HERMES F, BERTMER M, RODRIGUEZ-CASTELLON E, JIMENEZ-LOPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A:Gen, 2007, 328(2):174-182. doi: 10.1016/j.apcata.2007.06.003
    [27]
    WOOLERY G L, KUEHL G H, TIMKEN H C, CHESTER A W, VARTULI J C. On the nature of framework bronsted and lewis acid sites in ZSM-5[J]. Zeolites, 1997, 19(4):288-296. doi: 10.1016/S0144-2449(97)00086-9
    [28]
    LI S H, HUANG S J, SHEN W L, ZHANG H L, FANG H J, ZHENG A M, LIU S B, DENG F. Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy[J]. J Phys Chem C, 2008, 112(37):14486-14494. doi: 10.1021/jp803494n
    [29]
    GELBARD G. Organic synthesis by catalysis with ion-exchange resins[J]. Ind Eng Chem Res, 2005, 44(23):8468-8498. doi: 10.1021/ie0580405
    [30]
    BIRDJA Y Y, KOPER M T M. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide[J]. J Am Chem Soc, 2017, 139(5):2030-2034. doi: 10.1021/jacs.6b12008
    [31]
    RUSSELL A E, MILLER S P, MORKEN J P. Efficient Lewis acid catalyzed intramolecular cannizzaro reaction[J]. J Org Chem, 2000, 65(24):8381-8383. doi: 10.1021/jo0010734
    [32]
    OESTREICH D, LAUTENSCHUTZ L, ARNOLD U, SAUER J. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde[J]. Chem Eng Sci, 2017, 163:92-104. doi: 10.1016/j.ces.2016.12.037
    [33]
    INDU B, ERNST W R, GELBAUM L T. Methanol formic acid esterfication equilibrium in sulfuric acid solutions-influence of sodium salts[J]. Ind Eng Chem Res, 1993, 32(5):981-985. doi: 10.1021/ie00017a031
    [34]
    MORRIS S A, GUSEV D G. Rethinking the claisen-tishchenko reaction[J]. Angew Chem-Int Ed, 2017, 56(22):6228-6231. doi: 10.1002/anie.201611186
    [35]
    WU J B, ZHU H Q, WU Z W, QIN Z F, YAN L, DU B L, FAN W B, WANG J G. High Si/Al ratio HZSM-5 zeolite:An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chem, 2015, 17(4):2353-2357. doi: 10.1039/C4GC02510E
    [36]
    ARROYO S T, GARCIA A H, ALVERO M M, MARTIN J A S. Theoretical study of the neutral hydrolysis of methyl formate via a concerted and stepwise water-assisted mechanism using free-energy curves and molecular dynamics simulation[J]. Struct Chem, 2011, 22(4):909-915. doi: 10.1007/s11224-011-9777-0
    [37]
    GLARBORG P, ALZUETA M U, KJAERGAARD K, DAM-JOHANSEN K. Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor[J]. Combust Flame, 2003, 132(4):629-638. doi: 10.1016/S0010-2180(02)00535-7
    [38]
    HOCHGREB S, DRYER F L. A comprehensive study on CH2O oxidation kinetics[J]. Combust Flame, 1992, 91(3/4):257-284.
    [39]
    OLM C, VARGA T, VALKO E, CURRAN H J, TURANYI T. Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism[J]. Combust Flame, 2017, 186:45-64. doi: 10.1016/j.combustflame.2017.07.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (128) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return