Volume 44 Issue 6
Jun.  2016
Turn off MathJax
Article Contents
WEI Ling, WU Ying-quan, ZHAO Jian-tao, TAN Yi-sheng. Role of coal surface functional groups in methane cracking over different chars[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 661-667.
Citation: WEI Ling, WU Ying-quan, ZHAO Jian-tao, TAN Yi-sheng. Role of coal surface functional groups in methane cracking over different chars[J]. Journal of Fuel Chemistry and Technology, 2016, 44(6): 661-667.

Role of coal surface functional groups in methane cracking over different chars

More Information
  • Corresponding author: Tel: 0351-4044287, E-mail: tan@sxicc.ac.cn
  • Received Date: 2015-12-15
  • Rev Recd Date: 2016-01-21
  • Available Online: 2021-01-23
  • Publish Date: 2016-06-10
  • Methane cracking was studied over a set of Xiaolongtan lignite chars in a fixed bed reactor at 1123K and atmospheric pressure with a mixture of CH4/N2 (1:4). The chars were obtained by pyrolysis of raw Xiaolongtan coal in nitrogen at 1173K for 30min in a fixed bed reactor. The main functional groups in coal char were hydroxyl group, carbonyl group and ether bond and so on, which can be protected by dipping the char into solutions of barium hydroxide, phenyl hydrazine and hydrogen iodide, respectively. The catalytic activity of coal chars treated by barium hydroxide was lower than the raw chars, while that of the chars treated by phenyl hydrazine or hydrogen iodide were higher. Hydroxy in the coal char was expended by Ba (OH)2. The initial methane conversion was achieved at about 90.5% for the Ba (OH)2 -treated char with equivalent-volume impregnation. The corresponding hydrogen yield was at about 65.2%. The carbonyl group of the coal char was reduced by phenyl hydrazine, with the methane conversion and hydrogen yield about 55.4% and 42.9%, respectively. The methane conversion and hydrogen yield decreased, while the ether bond turned into hydroxy. It was speculated that hydroxyl group in coal char restrain the methane cracking, while carbonyl group and ether bond accelerate it. The methane conversion and hydrogen yield on the different coal chars decreased with increasing reaction duration. The char became deactivated at 123min following its exposure to methane. The main reason was that the carbon from methane cracking was deposited on the char, which is supported by scanning electron microscopy analysis.
  • loading
  • [1]
    许珊, 王晓来, 赵睿.甲烷催化制氢气的研究进展[J].化学进展, 2003, 15(2):141-150. http://www.cnki.com.cn/Article/CJFDTOTAL-NYYJ200502005.htm

    XU Shan, WANG Xiao-lai, ZHAO Rui. Study on the production of hydrogen from methane[J]. Prog Chem, 2003, 15(2):141-150.) http://www.cnki.com.cn/Article/CJFDTOTAL-NYYJ200502005.htm
    [2]
    白宗庆, 陈皓侃, 李文, 李保庆.甲烷在活性炭上裂解制氢研究[J].燃料化学学报, 2006, 34(1):66-70. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16950.shtml

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production from methane pyrolytic decomposition over activated carbons[J]. J Fuel Chem Technol, 2006, 34(1):66-70.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16950.shtml
    [3]
    白宗庆, 陈皓侃, 李文, 李保庆.流化床中甲烷在活性炭上裂解制氢研究[J].天然气化工, 2006, 31(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200601000.htm

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Hydrogen production by methane decomposition over activated carbon in a fluidized-bed reactor[J]. Nat Gas Chem Ind, 2006, 31(1):1-4.) http://www.cnki.com.cn/Article/CJFDTOTAL-TRQH200601000.htm
    [4]
    STEINBERG M. The Hy-C process (thermal decomposition of natural gas) potentially the lowest cost source of hydrogen with the least CO2 emission[J]. Energy Convers Manage, 1995, 36(6/9):791-796. https://www.researchgate.net/publication/222758081_The_Hy-C_process_thermal_decomposition_of_natural_gas_potentially_the_lowest_cost_source_of_hydrogen_with_the_least_CO2_emission
    [5]
    POIRIER M G, SAPUNDZHIEV C. Catalytic decomposition of natural gas to hydrogen for fuel cell applications[J]. Int J Hydrogen Energy, 1997, 22(4):429-433. doi: 10.1016/S0360-3199(96)00101-2
    [6]
    CHOUDHARY T V, SIVADINARAYANA C, CHUSUEI C C, KLINGHOFFER A, GOODMAN D W. Hydrogen production via catalytic decomposition of methane[J]. J Catal, 2001, 199(1):9-18. doi: 10.1006/jcat.2000.3142
    [7]
    潘智勇, 沈师孔. Ni/SiO2催化剂上甲烷催化裂解制氢[J].燃料化学学报, 2003, 31(5):466-470. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16847.shtml

    PAN Zhi-yong, SHEN Shi-kong. Hydrogen production via direct cracking of methane over Ni/SiO2 catalysts[J]. J Fuel Chem Technol, 2003, 31(5):466-470.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16847.shtml
    [8]
    SERBAN M, LEWIS M A, MARSHALL C L, DOCTOR R D. Hydrogen production by direct contact pyrolysis of natural gas[J]. Energy Fuels, 2003, 17(3):705-713. doi: 10.1021/ef020271q
    [9]
    CHEN J L, LI Y D, LI Z Q, ZHANG X X. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni-Cu-alumina catalysts[J]. App Catal A:Gen, 2004, 269(1/2):179-186. https://www.researchgate.net/publication/272409643_Direct_decomposition_of_methane_over_SBA-15_supported_Ni_Co_and_Fe_based_bimetallic_catalysts
    [10]
    白宗庆, 陈皓侃, 李文, 李保庆.热重-质谱联用研究焦炭在甲烷气氛下的热行为[J].燃料化学学报, 2005, 33(4):426-430. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16589.shtml

    BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005, 33(4):426-430.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract16589.shtml
    [11]
    MURADOV N. CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel[J]. Energy Fuels, 1998, 12(1):41-48. doi: 10.1021/ef9701145
    [12]
    MURADOV N. Hydrocarbon-based systems for CO2-free production of hydrogen//Proceeding of 13th World Hydrogen Energy Conference. Beijing, 2000:428-433.
    [13]
    MURADOV N. Catalysis of methane decomposition over elemental carbon[J]. Catal Commun, 2001, 2(3/4):89-94. https://www.researchgate.net/publication/222971069_Catalysis_of_methane_decomposition_over_elemental_carbon
    [14]
    MURADOV N. Hydrogen via methane decomposition:An application for decarbonization of fossil fuels[J]. Int J Hydrogen Energy, 2001, 26(11):1165-1175. doi: 10.1016/S0360-3199(01)00073-8
    [15]
    MURADOV N, VEZIROGLU T N. From hydrogen to hydrogen-carbon to hydrogen economy[J]. Int J Hydrogen Energy, 2005, 30(3):225-237. doi: 10.1016/j.ijhydene.2004.03.033
    [16]
    BAI Z Q, CHEN H K, LI W, LI B Q. Hydrogen production by methane decomposition over coal char[J]. Int J Hydrogen Energy, 2006, 31(7):899-905. doi: 10.1016/j.ijhydene.2005.08.001
    [17]
    SUN Z Q, WU J H, HAGHIGHI M, BROMLY J, NG E, WEE H L, WANG Y, ZHANG D K. Methane cracking over a bituminous coal char[J]. Energy Fuels, 2007, 21(3):1601-1605. doi: 10.1021/ef060616v
    [18]
    ZHANG Y, WU J H, ZHANG D K. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz[J]. Energy Fuels, 2008, 22(2):1142-1147. doi: 10.1021/ef700680d
    [19]
    徐泽夕, 吴晋沪, 王洋, 张东柯.甲烷在褐煤煤焦上的裂解反应研究[J].燃料化学学报, 2009, 37(3):277-281. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17443.shtml

    XU Ze-xi, WU Jin-hu, WANG Yang, ZHANG Dong-ke. Methane craking over lignite char[J]. J Fuel Chem Technol, 2009, 37(3):277-281.) http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17443.shtml
    [20]
    WEI L, TAN Y S, HAN Y Z, ZHAO J T, WU J H, ZHANG D K. Hydrogen production by methane cracking over different coal chars[J]. Fuel, 2011, 90(11):3473-3479. doi: 10.1016/j.fuel.2011.06.053
    [21]
    魏玲, 谭猗生, 韩怡卓, 赵建涛.煤焦中灰成分对甲烷裂解的影响[J].化工学报, 2015, 66(9):3733-3738. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509062.htm

    WEI Ling, TAN Yi-sheng, HAN Yi-zhuo, ZHAO Jian-tao. Influence of coal char on methane cracking[J]. CIESC J, 2015, 66(9):3733-3738.) http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201509062.htm
    [22]
    朱之培, 高晋生.煤化学[M].上海:上海科学技术出版社, 1984, 122-129.

    ZHU Zhi-pei, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984, 122-129.)
    [23]
    李庆钊, 林柏泉, 赵长遂, 武卫芳.基于傅里叶红外光谱的高温煤焦表面化学结构特性分析[J].中国电机工程学报, 2011, 31(32):46-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201132007.htm

    LI Qing-zhao, LIN Bai-quan, ZHAO Chang-sui, WU Wei-fang. Chemical structure analysis of coal char surface based on Fourier-Transform infrared spectrometer[J]. Proc CSEE, 2011, 31(32):46-52.) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201132007.htm
    [24]
    FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, ORFAO J J M. Modification of the surface chemistry of activated carbons[J]. Carbon, 1999, 37:1379-1389. doi: 10.1016/S0008-6223(98)00333-9
    [25]
    孟华平.煤焦表面含氧官能团对甲烷分解反应的催化作用.太原:太原理工大学, 2008.

    MENG Hua-ping. The catalytic effect of oxygen-containing group in coal char surface on methane decomposition reaction. Taiyuan:Taiyuan University of Technology, 2008.)
    [26]
    单晓梅, 朱书全, 张文辉, 李书荣, 李淑琴.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报, 2003, 32(6):729-733. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200306032.htm

    SHAN Xiao-mei, ZHU Shu-quan, ZHANG Wen-hui, LI Shu-rong, LI Shu-qin. Modification surface properties of coal based and coconut shell activated carbons by oxidation[J]. J China Univ Min Technol, 2003, 32(6):729-733.) http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200306032.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (120) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return