Volume 47 Issue 7
Jul.  2019
Turn off MathJax
Article Contents
LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 799-805.
Citation: LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2019, 47(7): 799-805.

Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous-phase reforming of methanol to hydrogen

Funds:

the National Natural Science Foundation of China 21878321

More Information
  • Corresponding author: ZHU Shan-hui, Tel: 15834137352, E-mail: zhushanhui@sxicc.ac.cn
  • Received Date: 2019-04-01
  • Rev Recd Date: 2019-04-24
  • Available Online: 2021-01-23
  • Publish Date: 2019-07-10
  • Nanosheets MoS2 with only 6 layers have been successfully synthesized by hydrothermal method and used as support to prepare a series of Pt and PtM (M=Ru, Pd, Co and Ni) bimetallic catalysts for low temperature aqueous-phase reforming of methanol (APRM) to produce hydrogen. Among those catalysts, PtCo supported on MoS2 nanosheets catalyst exhibited the best performance, and its turnover frequency (TOF) of H2 formation reached 37142 h-1 at 220℃. The N2 adsorption-desorption, TEM, H2-TPR and XPS results showed that PtCo/MoS2 performed the highest reduction degree, and the strong electronic interaction between Pt and MoS2 enhanced the adsorption and activation of methanol on the electron-deficient Pt, thus promoted the methanol reforming.
  • loading
  • [1]
    DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001, 414:332-337. doi: 10.1038/35104599
    [2]
    VAN DEN BERG A W C, AREAN C O. Materials for hydrogen storage:Current research trends and perspectives[J]. Chem Commun, 2008, 6:668-681.
    [3]
    STEELE B H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414:345-352. doi: 10.1038/35104620
    [4]
    SCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414:353-358. doi: 10.1038/35104634
    [5]
    AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994, 19(2):131-137. doi: 10.1016/0360-3199(94)90117-1
    [6]
    DAVID W I F, MAKEPEACE J W, CALLEAR S K, HUNTER H M A, TAYLOR J D, WOOD T J, JONES M O. Hydrogen production from ammonia using sodium amide[J]. J Am Chem Soc, 2014, 136:13082-13085. doi: 10.1021/ja5042836
    [7]
    YU K M K, TONG W, WEST A, CHEUNG K, LI T, SMITH G, GUO Y, TASNG S C. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature[J]. Nat Commun, 2012, 3:1230. doi: 10.1038/ncomms2242
    [8]
    SONG C. Fuel processing for low-temperature and high-temperature fuel cells:challenges and opportunities for sustainable development in the 21st century[J]. Catal Today, 2002, 77(1/2):17-49.
    [9]
    DENG Z, FERREIRA J M F, SAKKA Y. Hydrogen-generation materials for portable applications[J]. J Am Chem Soc, 2008, 91(12):3825-3834.
    [10]
    CORTRIGHT R D, DAVADA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418:964-967. doi: 10.1038/nature01009
    [11]
    张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯.甲醇水蒸气重整制氢反应条件的优化[J].燃料化学学报, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019

    ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen production[J]. J Fuel Chem Technol, 2013, 41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019
    [12]
    刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [13]
    杨淑倩, 刘玉娟, 刘进博, 房明明, 肖国鹏, 张磊, 陈琳, 苑兴洲, 张健.焙烧温度对甲醇水蒸气重整制氢Ce/Cu/Zn-Al水滑石衍生催化剂的影响.[J].燃料化学学报, 2018, 46(12):1482-1490. doi: 10.3969/j.issn.0253-2409.2018.12.009

    YANG Shu-qian, LIU Yu-juan, LIU Jin-bo, FANG Ming-ming, XIAO Guo-peng, ZHANG Lei, CHEN Lin, YUAN Xing-zhou, ZHANG Jian. Effect of calcination temperature on the catalytic performance of the hydrotalcite derived Ce/Cu/Zn-Al catalysts for hydrogen production via methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(12):1482-1490. doi: 10.3969/j.issn.0253-2409.2018.12.009
    [14]
    LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHⅡ T, KUMAGAI M. Steam reforming of methanol over Cu=CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003, 22(3/4):205-213. doi: 10.1023/A:1023519802373
    [15]
    BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications:Development of zirconia-containing Cu-Zn-Al catalysts[J]. Catal Today, 1999, 51(3/4):521-533.
    [16]
    YFANTIA V L, VASILIADOU E S, LEMONIDOU A A. Glycerol hydro-deoxygenation aided by in situ H2 generation via methanol aqueous phase reforming over a Cu-ZnO-Al2O3 catalyst[J]. Catal Sci Technol, 2016, 6:5415-5426. doi: 10.1039/C6CY00132G
    [17]
    LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, JIANG Z, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544:80-83. doi: 10.1038/nature21672
    [18]
    PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chem Rev, 2001, 107(10):3992-4021. doi: 10.1016-j.jpowsour.2006.04.091/
    [19]
    NIELSEN M, ALBERICO E, BAUMANN W, DREXLER H, JUNGE H, GLADIALI S, BELLER M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide[J]. Nature, 2013, 495:85-89. doi: 10.1038/nature11891
    [20]
    HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets:Preparation, properties and applications[J]. Chem Soc Rev, 2013, 42(5):1934-1946. doi: 10.1039/c2cs35387c
    [21]
    LAURSEN A B, KEGNAES S, DAHL S, CHORKENDORFF T. Molybdenum sulfides-efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution[J]. Energy Environ Sci, 2012, 5(2):5577-5591. doi: 10.1039/c2ee02618j
    [22]
    MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011, 4(10):3878-3888. doi: 10.1039/c1ee01970h
    [23]
    VRUBEL H, MERKI D, HU X. Hydrogen evolution catalyzed by MoS3 and MoS2 particles[J]. Energy Environ Sci, 2012, 5(3):6136-6144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44a53a86f05a86745d11b2338fff6d64
    [24]
    WANG T, LIU L, ZHU Z, PAPAKONSTANTINOU P, HU J, LIU H, LI M. Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticleson an Au electrode[J]. Energy Environ Sci, 2013, 6(2):625-633
    [25]
    LI Y, WANG H, XIE L, LIANG Y, HONG G, DAI H. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011, 133:7296-7299. doi: 10.1021/ja201269b
    [26]
    CHE Z, CUMMINS D, REINECKE B N, CLARK E, SUNKARA M, JARAMILLO T. Core-shell MoO3-MoS2 nanowires for hydrogen evolution:A functional design for electrocatalytic materials[J]. Nano Lett, 2011, 11:4168-4175. doi: 10.1021/nl2020476
    [27]
    CHANG K, HAI X, PANG H, ZHANG H, SHI L, LIU G, LIU H, ZHAO G, LI M, YE J. Targeted synthesis of 2H-and 1T-Phase MoS2 monolayers for catalytic hydrogen evolution[J]. Adv Mater, 2016, 28:10033-10041. doi: 10.1002/adma.201603765
    [28]
    BENCK J D, CHEN Z, KURITZKY L Y, FORMAN A J, JARAMILLO T F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production:Insights into the origin of their catalytic activity[J]. ACS Catal, 2012, 2(9):1916-1923. doi: 10.1021/cs300451q
    [29]
    LAURSEN A B, VESBORG P C K, CHORKENDORFF I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability[J]. Chem Commun, 2013, 49(43):4965-4967. doi: 10.1039/c3cc41945b
    [30]
    CHANG Y H, LIN C T, CHEN T Y, HSU C, LEE Y, ZHANG W, WEI K, LI L. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams[J]. Adv Mater, 2013, 25:756-760. doi: 10.1002/adma.201202920
    [31]
    MERKI D, FIERRO S, VRUBEL H, HU X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J]. Chem Sci, 2011, 2(7):1262-1267. doi: 10.1039/C1SC00117E
    [32]
    XIE J, ZHANG H, LI S, WANG R, SUN X, ZHOU M, ZHOU J, KOU X, XIE Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv Mater, 2013, 25(40):5807-5813. doi: 10.1002/adma.v25.40
    [33]
    XIE J, WU C, HU S, DAI J, ZHANG N, FENG J, YANG J, XIE Y. Ambient rutile VO2(R) hollow hierarchitectures with rich grain boundaries from new-state nsutite-type VO2, displaying enhanced hydrogen adsorption behavior[J]. Phys Chem Chem Phys, 2012, 14(14):4810-4816. doi: 10.1039/c2cp40409e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return